Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (11): 811-820    DOI: 10.11901/1005.3093.2021.220
ARTICLES Current Issue | Archive | Adv Search |
Effect of Melting Rate on Structure and Inclusions of GH4169G Alloy Ingot Fabricated by Argon Protected Electroslag Melting
HAO Jian1,2, LIU Fang1,2(), YANG Shulin3, YAO Xiaoyu1,2, SUN Wenru1,2()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.AECC Shenyang Liming Areo Engine Co. Ltd., Shenyang 110043, China
Cite this article: 

HAO Jian, LIU Fang, YANG Shulin, YAO Xiaoyu, SUN Wenru. Effect of Melting Rate on Structure and Inclusions of GH4169G Alloy Ingot Fabricated by Argon Protected Electroslag Melting. Chinese Journal of Materials Research, 2022, 36(11): 811-820.

Download:  HTML  PDF(15807KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electroslag remelting (ESR) has been widely applied as an important technology to produce ingots for special steels and alloys because of its remarkably advantages, such as the process can purify the prepared ingots by effectively eliminating the impurity sulfur and the large inclusions. However, as one of the most important parameters of ESR, the effect of melting rate on the purity of ingot is still controversial. For this purpose, the macro- and micro-structure and nonmetallic inclusion characteristics at different positions of GH4169G ingots produced by industrial-scale argon protected electroslag remelting (PESR) technology with 2 remelting rates were comparatively investigated by means of OM, SEM, EDS and EPMA. The results indicate that a proper high melting rate is beneficial to shorten the local solidification time of ingot, reduce the secondary dendrite arm spacing and refine dendrite structure, but has little effect on the distribution of Nb, Ti and other elements along the radial direction in macro-scale. Besides, the melting rate has little effect on the inclusion types of GH4169G ingot, which are mainly oxides, fluorides and nitrides. The inclusions in the ingot are usually double or three layers with oxide as the core, nitride as the secondary outer layer and carbide as the outermost layer. The influence of the melting rate on the movement of inclusions in the remelting process was simulated via the so called MeltFlow-ESR software. It was found that the increase of melting rate was conducive to the movement of inclusions to the ingot surface, thereby the thickness of the inclusion enriched area on the surface of the ingot and the number of inclusions in the ingot could be reduced. In addition, the increase of melting rate can shorten the time of inclusion precipitation and reduce the size of inclusions.

Key words:  metallic materials      GH4169G alloy      electroslag remelting      melting rate      inclusion      MeltFlow-ESR     
Received:  09 April 2021     
ZTFLH:  TF142  
About author:  SUN Wenru, Tel: (024)23971737, E-mail: wrsun@imr.ac.cn
LIU Fang, Tel: (024)23971325, E-mail: fangliu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.220     OR     https://www.cjmr.org/EN/Y2022/V36/I11/811

Fig.1  Macrostructure of electroslag ingot remelted with the rates of LMR (a) and LMR+1 kg/min (b)
Melting ratePositionTiNbMgNOS
LMREdge1.035.35<0.0030.00900.0009<0.0005
Center1.035.36<0.0030.00600.0014<0.0005
LMR+1 kg/minEdge0.965.37<0.0030.00620.0009<0.0005
Center0.985.40<0.0030.00710.0013<0.0005
Table 1  Chemical composition in the edge and center of electroslag ingots (mass fraction, %)
Fig.2  Microstructures of the electroslag ingots (a) LMR edge; (b) LMR R/2; (c) LMR center; (d) LMR+1 kg/min edge; (e) LMR+1 kg/min R/2; (f) LMR+1 kg/min center
Fig.3  Effects of ESR melting rate on the SDAS
Fig.4  Effects of ESR melting rate on LST and SDAS of the GH4169G alloy simulated by Meltflow-ESR software (a) LST of LMR ingot; (b) LST of LMR+1 kg/min ingot; (c) SDAS of LMR ingot; (d) SDAS of LMR+1 kg/min ingot
Fig.5  Morphologies and distribution of inclusions at positions with different distances away from surface in ingots (a, b, c, d) LMR; (e, f, g) LMR+1 kg/min. (a, e) 2 mm; (b, f) 4 mm; (c, g) 6~8 mm; (d) ≥10 mm
Inclusion typeONCAlTiCaFMgNbNiCrFe
Fluoride29.28--9.5213.899.2315.615.86-10.612.693.31
Oxide13.59--1.9949.8610.05---14.315.224.99
Nitride-18.385.15-58.37---14.172.221.060.64
Table 2  Inclusions on the surface of GH4169G electroslag ingots (mass fraction, %)
Fig.8  Number of inclusions per unit area at different positions of ingot from surface
Fig.6  Morphologies and element scanning of composite inclusions with MgO?Al2O3 core
Fig.7  Morphologies and element scanning of composite inclusions with (Ti, Nb) N core
Fig.9  Quantity distribution of inclusions along radial direction (a) oxide; (b) nitride
Fig.10  Average size distribution of inclusions along radial direction (a) oxide; (b) nitride
Fig.11  Effects of melting rate on the inclusion trajectories simulated by using MeltFlow-ESR software (a) LMR-1 kg/min; (b) LMR; (c) LMR+1 kg/min;(d) LMR+2 kg/min
1 Sun W R, Chen G S, Luo H J, et al. Microstructure and mechanical properties of GH4169G forging billet and disc [J]. J. Iron Steel Res., 2011, 23(): 201
孙文儒, 陈国胜, 罗恒军 等. 工业生产GH4169G合金棒材和盘锻件的组织性能 [J]. 钢铁研究学报, 2011, 23(): 201
2 Li N, Guo S R, Lu D Z, et al. Effect of trace phosphorus and boron on the stress rupture and creep properties of direct aging In718 alloy [J]. Acta Metall. Sin., 2003, 39: 1255
李 娜, 郭守仁, 卢德忠 等. 微量元素磷、硼对直接时效IN718合金持久蠕变性能的影响 [J]. 金属学报, 2003, 39: 1255
3 Zheng Q Y, Chen Z Q, Yu X F, et al. Influence of solution treatment on creep of a new superalloy GH4169G [J]. Chin. J. Mater. Res., 2013, 27: 444
郑渠英, 陈仲强, 于兴福 等. 固溶处理对GH4169G合金蠕变的影响 [J]. 材料研究学报, 2013, 27: 444
4 An X L, Zhang B, Chu C L, et al. Evolution of microstructures and properties of the GH4169 superalloy during short-term and high-temperature processing [J]. Mater. Sci. Eng., 2018, 744A: 255
5 Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China [J]. Acta Metall. Sin., 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
杜金辉, 吕旭东, 董建新 等. 国内变形高温合金研制进展 [J]. 金属学报, 2019, 55: 1115
6 Jia D, Sun W R, Xu D S, et al. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35: 1851
doi: 10.1016/j.jmst.2019.04.018
7 Tian S G, Wang X, Xie J, et al. Characteristic and mechanism of phase transformation of GH4169G alloy during heat treatment [J]. Acta Metall. Sin., 2013, 49: 845
doi: 10.3724/SP.J.1037.2012.00712
田素贵, 王 欣, 谢 君 等. GH4169G合金热处理期间的相转变特征与机理分析 [J]. 金属学报, 2013, 49: 845
doi: 10.3724/SP.J.1037.2012.00712
8 Li Z R, Ma C L, Tian S G, et al. Microstructure and creep property of isothermal forging GH4169G superalloy [J]. High Temp. Mater. Processes, 2014, 33: 447
doi: 10.1515/htmp-2013-0063
9 Van Den Avyle J A, Brooks J A, Powell A C. Reducing defects in remelting processes for high-performance alloys [J]. JOM, 1998, 50(3): 22
10 Chen Z Y, Yang S F, Qu J L, et al. Effects of different melting technologies on the purity of superalloy GH4738 [J]. Materials (Basel), 2018, 11: 1838
doi: 10.3390/ma11101838
11 Zhang Y. Study on formation mechanism and prevention methods for electros lag remelting steel ingots [D]. Beijing: University of Science and Technology Beijing, 2016
张 扬. 电渣重熔钢锭中黑斑的形成机理及控制措施研究 [D]. 北京: 北京科技大学, 2016
12 Jiang Z H, Geng X. Research on the surface quality of ESR large slab ingots [J]. Adv. Mater. Res., 2010, 146-147: 670
13 Ahmadi S, Arabi H, Shokuhfar A, et al. Evaluation of the electroslag remelting process in medical grade of 316LC stainless steel [J]. J. Mater. Sci. Technol., 2009, 25: 592
14 Shi X, Duan S C, Yang W S, et al. Effects of remelting current on structure, composition, microsegregation, and inclusions in Inconel 718 electroslag remelting ingots [J]. Metall. Mater. Trans., 2019, 50B: 3072
15 Liu Y, Zhang Z, Li G Q, et al. Effect of current on segregation and inclusions characteristics of dual alloy ingot processed by electroslag remelting [J]. High Temp. Mater. Processes, 2019, 38: 207
doi: 10.1515/htmp-2017-0144
16 Shi C B, Zheng D L, Guo B S, et al. Evolution of oxide-sulfide complex inclusions and its correlation with steel cleanliness during electroslag rapid remelting (ESRR) of tool steel [J]. Metall. Mater. Trans., 2018, 49B: 3390
17 Li Q, Wang Z X, Xie S Y. Research on the development of mathematical model of the whole process of electroslag remelting and the process simulation [J]. Acta Metall. Sin., 2017, 53: 494
doi: 10.11900/0412.1961.2016.00386
李 青, 王资兴, 谢树元. 电渣重熔全过程的数学模型开发及过程模拟研究 [J]. 金属学报, 2017, 53: 494
18 Huang X C, Li B K, Liu Z Q, et al. Numerical study on the removal and distribution of non-metallic inclusions in electroslag remelting process [J]. Int. J. Heat Mass Transfer, 2019, 135: 1300
doi: 10.1016/j.ijheatmasstransfer.2019.02.080
19 Wang Q, Wang R T, He Z, et al. Numerical analysis of inclusion motion behavior in electroslag remelting process [J]. Int. J. Heat Mass Transfer, 2018, 125: 1333
doi: 10.1016/j.ijheatmasstransfer.2018.04.168
20 Hou D, Wang D Y, Jiang Z H, et al. Investigation on slag–metal-inclusion multiphase reactions during electroslag remelting of die steel [J]. Metall. Mater. Trans., 2021, 52B: 478
21 Wang Z X, Wang L, Sun W R. Effect of melting rate on microstructure of IN718 alloy vacuum arc remelting ingot [J]. Trans. Mater. Heat Treat., 2019, 40(1): 91
王资兴, 王 磊, 孙文儒. 熔速对IN718合金真空自耗铸锭组织的影响 [J]. 材料热处理学报, 2019, 40(1): 91
22 Wang M, Zha X, Gao M, et al. Structure, microsegregation, and precipitates of an alloy 690 ESR Ingot in industrial scale [J]. Metall. Mater. Trans., 2015, 46A: 5217
23 Hernandez-Morales B, Mitchell A. Review of mathematical models of fluid flow, heat transfer, and mass transfer in electroslag remelting process [J]. Ironmak. Steelmak., 1999, 26: 423
doi: 10.1179/030192399677275
24 Li Z B, Zhou W H, Li Y D. Mechanism of removal of non-metallic inclusions in the ESR process [J]. Iron Steel, 1980, 15(1): 23
李正邦, 周文辉, 李谊大. 电渣重熔去除夹杂的机理 [J]. 钢铁, 1980, 15(1): 23
25 Fu J. An investigation of mechanism on the removal of oxide inclusions during ESR process [J]. Acta Metall. Sin., 1979, 15: 526
傅 杰. 电渣重熔过程中氧化物夹杂去除机理的探讨 [J]. 金属学报, 1979, 15: 526
26 Mitchell A. Oxide inclusion behaviour during consumable electrode remelting [J]. Ironmak. Steelmak., 1974, 1: 172
27 Li Z B. Electroslag Metallurgy Theory and Practice [M]. Beijing: Metallurgical Industry Press, 2010: 25
李正邦. 电渣冶金的理论与实践 [M]. 北京: 冶金工业出版社, 2010: 25
28 Chen K, Du D H, Lu H, et al. Effect of TiN inclusion on fatigue crack growth behavior of alloy 690 tube [J]. Rare Met. Mat. Eng., 2018, 47: 1180
陈 凯, 杜东海, 陆 辉 等. TiN夹杂物对690合金传热管疲劳裂纹扩展行为的影响 [J]. 稀有金属材料与工程, 2018, 47: 1180
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!