Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (9): 675-681    DOI: 10.11901/1005.3093.2020.309
ARTICLES Current Issue | Archive | Adv Search |
Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor
CHEN Yiwen1, WANG Cheng1,3(), LOU Xia1, LI Dingjun1, ZHOU Ke1, CHEN Minghui4,5, WANG Qunchang4, ZHU Shenglong2,4,5, WANG Fuhui4,5
1.State Key Laboratory of Long-life High Temperature Materials, Dong Fang Turbine Co. , Ltd. Deyang, 61800, China
2.Shichangxu Advanced Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
3.Jiangsu JITRI Road Engineering Technology and Equipment Research Institute Co. , Ltd. Xuzhou 220005, China
4.School of Materials Science and Engineering, Northeastern University, Shenyang 110189, China
5.Shenyang National Laboratory for Materials Science, Shenyang 110016, China
Cite this article: 

CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor. Chinese Journal of Materials Research, 2021, 35(9): 675-681.

Download:  HTML  PDF(9694KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel inorganic silicate composite coating was prepared by physical blending process with potassium silicate of module 3.25 as binder, alpha alumina, copper chromium black and white mica as pigment, and proper amount curing agent. Then the oxidation behavior of the ZG12Cr9Mo1Co1NiVNbNB (CB2) ferritic heat resistant steel without and with the composite coating was comparatively investigated at 650°C in atmosphere of oxygen flow with 20% water vapors. The results show that serious oxidation of CB2 steel occurred, which follows the parabolic law in different periods and resulted in the formation of a two-layered oxide scale of poorly protective Fe2O3. The application of the composite coating could reduce markedly the oxidation rate of the CB2 steel, meanwhile the coating presented also excellent resistance to cyclically thermal shock. Furthermore, a thin and continuous Cr-rich oxide layer could be detected on the steel surface beneath the composite coating after the oxidation test, to which the enhancement of oxidation resistance of the coated CB2 steel may be ascribed.

Key words:  materials failure and protection      inorganic compound coatings      high temperature water vapor oxidation      CB2 heat resistance steel     
Received:  23 July 2020     
ZTFLH:  TG174.45  
Fund: State Key Laboratory of Long-life High Temperature Materials(DTCC28EE190229);National Key R&D Program of China(2018YFB2003601)
About author:  WANG Cheng, Tel: (024)23904856, E-mail: chengjitri@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.309     OR     https://www.cjmr.org/EN/Y2021/V35/I9/675

Fig.1  Oxidation kinetics of CB2 steel in an environment containing water vapor at 650℃
StageKp/mg2·cm-4·h-1Periods/h
Initial stage7.61×10-50~4
Stable stage5.95×10-517~66
Accelerate stage Ⅰ1.49×10-3193~647
Accelerate stage Ⅱ1.15×10-21173~1500
Table 1  Parabolic rate constant Kp of CB2 at 650℃
Fig.2  Surface (a) and sectional (b) SEM morphologies of CB2 steel after oxidation in an environment coating water vapor at 650℃
Fig.3  XRD patterns of CB2 steel
Fig.4  Surface (a) and sectional (b) SEM morphologies of coated CB2 steel after oxidation in an environment coating water vapor at 650℃
Fig.5  Surface (a) and sectional (b) SEM morphologies of coatings after 50 thermal shocks
Fig.6  EDS line scanning of coated CB2 steel after oxidation (a) SEM (b) element distribution
Fig.7  Cr rich oxides at the interface of the coatings and CB2 steel
1 Yang Y P, Xu C, Xu G, et al. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery [J]. Energ. Convers. Manage, 2015, 89:137
2 Tumanovskii A G, Shvarts A L, Somova E V, et al. Review of the coal-fired, over-supercritical and ultra-dupercritical steam power plants [J]. Therm. Eng., 2017, 64: 83
3 János M B. High efficiency electric power generation: the environmental role [J]. Prog. Energy Combust. Sci., 2007, 33: 107
4 Mandziej S T, Vyrostkova A. Creep and fracture behavior of long-annealed weld HAZ in CB2 steel [J]. Weld. World, 2020, 64:573
5 Zhu Y R, Fan H Y, Sun L, et al. Effect of normalizing temperature on microstructure and properties of heat-resistant steel CB2 [J]. Hot Work. Tech., 2015, 44:224
朱玉蓉, 范洪远, 孙兰等. 正火温度对CB2耐热钢组织和性能的影响[J]. 热加工工艺, 2015, 44:224
6 Yang X, Sun L, Xiong J, et al. Effect of aging temperature on the microstructures and mechanical properties of ZG12Cr9Mo1Co1NiVNbNB ferritic heat-resistant steel [J]. Int. J. Min. Met. Mater., 2016, 23: 168
7 He H J, Sheng G M, Jiao Y J, et al. Effect of post welding heat treatment on microstructure and mechanical properties of CB2 heat resistant steel joints [J]. Heat Treat. Met., 2018, 43(2): 194
何洪杰, 盛光敏, 焦英俊等. 焊后热处理对CB2耐热钢焊接头组织及力学性能的影响 [J]. 金属热处理, 2018, 43(2): 194
8 Asteman H, Svensson J E, Johansson L G. Oxidation of 310 steel in H2O/O2 mixtures at 600℃: the effect of water-vapour-enhanced chromium evaporation [J]. Corros. Sci., 2002, 44: 2635
9 Peng X, Yan J, Zhou Y, et al. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air [J]. Acta Materialia, 2005, 53: 5079
10 Wang Z W, Gong X T, Xie X. High temperature oxidation behavior of pure Cr at 650℃ [J]. Heat Treat. Met., 2017, 42(3): 9
王志武, 龚雪婷, 谢兴. 纯铬的650℃高温氧化行为 [J]. 金属热处理, 2017, 42(3): 9
11 Shen M, Zhu S L, Wang F H. A general strategy for the ultrafast surface modification of metals [J]. Nat. Commun., 2016, 7: 13797
12 Yamauchi A, Kurokawa K, Takahashi H. Evaporation of Cr2O3 in atmospheres containing H2O [J]. Oxid. Met., 2003, 59: 517
13 Du Y, Wang C, Yang L L, et al. Enhanced oxidation and corrosion inhibition of 1Cr11Ni2W2MoV stainless steel by nano-modified silicone-based composite coatings at 600℃ [J]. Corros. Sci., 2020, 169: 108599
14 Wang Z W,Gong X T,Wang C H. Oxidation behavior of Fe-Cr alloy with different content of Cr in high-temperature and high-pressure vapor [J]. Mater. Prot., 2017, 50(5): 33
王志武, 龚雪婷, 王传慧. 不同Cr 含量的Fe-Cr合金高温高压水蒸气氧化行为 [J]. 材料保护, 2017, 50(5): 33
15 Robino C V. Representation of mixed reactive gases on free energy (Ellingham-Richardson) diagrams [J]. Metall. Mater.Trans. 1996, 27B: 65
16 Othman N K, Zhang J Q, Young D J. Water vapour effects on Fe-Cr alloy oxidation [J]. Oxid. Met., 2010, 73: 337
17 Opila E J, Myers D L, Jacobson N S, et al. Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g) [J]. J. Phys. Chem. A, 2007, 111: 1971
18 Halvarsson M, Tang J E, Asteman H, et al. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600℃. Corros. Sci., 2006, 48: 2014
19 Park S J, Seo M K. The effects of MoSi2 on the oxidation behavior of carbon/carbon composites. Carbon, 2001, 39: 1229
20 Gree A P, Louw W C, Swart HC. The oxidation of industrial FeCrMo steel. Corros. Sci., 2000, 42: 1725
21 Wei L L, Chen LQ, Liu H L, et al. Precipitation behavior of laves phase in the vicinity of oxide film of ferritic stainless steel: selective oxidation‑induced precipitation. Oxid. Met. 2020, 93: 195
22 Abea F, Kutsumib H, Haruyamac H, et al. Improvement of oxidation resistance of 9 mass% chromium steel for advanced-ultra supercritical power plant boilers by pre-oxidation treatment. Corros. Sci., 2017, 114: 1
23 Yuan J T, Wu X M, Wang W, et al. The effect of surface finish on the scaling behavior of stainless steel in steam and supercritical water [J]. Oxid. Met., 2013, 79: 541
24 Yue Z W, Fu Min, Li X G. et al. Effect of shot peening treatment on steam oxidation resistance of TP304H reheater tube [J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 137
岳增武, 傅敏, 李辛庚等. 内壁喷丸处理对TP304H耐热钢锅炉管抗水蒸汽氧化性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32(2): 137
25 Wang C, Wang W, Zhu S L, et al. Oxidation inhibition of γ-TiAl alloy at 900℃ by inorganic silicate composite coatings [J]. Corros. Sci., 2013, 76: 284
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[5] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[6] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[7] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[8] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[9] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[10] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[11] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[14] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
[15] WANG Yuanchen,SONG Zhuman,LI Rui,SHI Wenbo,ZHU Yankun,ZHANG Guangping. Fatigue Properties and Crack Growth Behavior of ML40Cr Steel for 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(10): 771-775.
No Suggested Reading articles found!