Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (8): 569-574    DOI: 10.11901/1005.3093.2020.019
ARTICLES Current Issue | Archive | Adv Search |
Synthesis and Self-assembly Behavior of Amylose-chenodeoxycholic Acid Conjugates
XIONG Xiaoqin(), ZHANG Hongquan, FANG Chanyu
Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, China
Cite this article: 

XIONG Xiaoqin, ZHANG Hongquan, FANG Chanyu. Synthesis and Self-assembly Behavior of Amylose-chenodeoxycholic Acid Conjugates. Chinese Journal of Materials Research, 2020, 34(8): 569-574.

Download:  HTML  PDF(3798KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Amylose-chenodeoxycholic acid conjugates (AMY-CDCA) were prepared using 1-ethyl-3-(3-dimethylaminopropyl)-carbonized diimine (EDC) /N-hydroxysuccinimide (NHS) cross-linking agents. The AMY-CDCA polymer was characterized by FTIR, 1H NMR and ultraviolet spectroscopy. It was shown that CDCA was successfully coupled to the amylose backbone with a molar substitution of 138.15 per 100 glucose units. Self-Assembled micelles were prepared from the AMY-CDCA polymer through dialysis method. The average particle size of the micelles measured by dynamic light scattering method is 224 nm, and the polydispersity index is 0.110. TEM images demonstrated that the micelles are of spherical shape with a core-shell structure. The critical micelle concentration is 2.8×10-3 mg/mL, which was determined using a probe fluorescence technique in the presence of pyrene. Additionally, Nile Red can be encapsulated and stabilized in the hydrophobic core of the micelles.

Key words:  organic polymer materials      amylose      chenodeoxycholic acid      micelle      self assembly     
Received:  15 January 2020     
ZTFLH:  O631  
Fund: Natural Science Foundation of Hubei Province(2016CFB310)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.019     OR     https://www.cjmr.org/EN/Y2020/V34/I8/569

Fig.1  Synthesis schemes of AMY-CDCA conjugates
Fig.2  FTIR spectra of Amylose, CDCA and AMY-CDCA
Fig.3  1H NMR spectra of Amylose and AMY-CDCA
Fig.4  Absorbance calibration curve for CDCA
Fig.5  Particle size distribution of AMY-CDCA polymeric micelles
Fig.6  TEM images of AMY-CDCA polymeric micelles
Fig.7  Intensity ratios (I333/I338) from pyrene excitation spectra as a function of AMY-CDCA micelle concentration
Fig.8  Fluorescence emission spectra of Nile Red in aqueous solutions at different concentrations of AMY-CDCA micelles (λex=550 nm)
[1] Liu R. Water-Insoluble Drug Formulation [M]. 2nd ed. Boca Raton, FL: CRC Press, 2008: 669
[2] Torchilin V P. Nanoparticulates as Drug Carriers [M]. London: Imperial College Press, 2006: 724
[3] Biswas S, Kumari P, Lakhani P M, et al. Recent advances in polymeric micelles for anti-cancer drug delivery [J]. Eur. J. Pharm. Sci., 2016, 83: 184
doi: 10.1016/j.ejps.2015.12.031 pmid: 26747018
[4] Zhang N, Wardwell P R, Bader R A. Polysaccharide-based micelles for drug delivery [J]. Pharmaceutics, 2013, 5: 329
doi: 10.3390/pharmaceutics5020329
[5] Saravanakumar G, Jo D G, Park J H. Polysaccharide-based nano-particles: a versatile platform for drug delivery and biomedical imaging [J]. Curr. Med. Chem., 2012, 19: 3212
doi: 10.2174/092986712800784658 pmid: 22612705
[6] Huh M S, Lee E J, Koo H, et al. Polysaccharide-based nanoparticles for gene delivery [J]. Top. Curr. Chem (Cham), 2017, 375: 31
[7] Barclay T G, Day C M, Petrovsky N, et al. Review of polysaccharide particle-based functional drug delivery [J]. Carbohydr. Polym., 2019, 221: 94
pmid: 31227171
[8] Chen L L, Ji F L, Bao Y M, et al. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy [J]. Mater. Sci. Eng., 2017, 70C: 418
[9] Sarika P R, James N R, Nishna N, et al. Galactosylated pullulan-curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells [J]. Colloid Surf., 2015, 133B: 347
[10] Chen L L, Wang X H, Wang J Y. Novel bifunctional pullulan-based micelles with good hemcompatibility for efficient co-delivery of cancer suppressor (Gene P53) and doxorubicin in cancer cells [J]. Nanomed. Nanotechnol. Biol. Med., 2016, 12: 530
[11] Wang HA, Li ZY, Lu ST, et al. Nano micelles of cellulose-graft-poly (l-lactic acid) anchored with epithelial cell adhesion antibody for enhanced drug loading and anti-tumor effect [J]. Mater. Today Commun., 2020, 22: 100764
[12] Lu A J, Petit E, Li S M, et al. Novel thermo-responsive micelles prepared from amphiphilic hydroxypropyl methyl cellulose-block-JEFFAMINE copolymers [J]. Inter. J. Biol. Macromol., 2019, 135: 38
[13] Song Y B, Zhang L Z, Gan W P, et al. Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery [J]. Colloid Surf., 2011, 83B: 313
[14] Jin R, Guo X L, Dong L L, et al. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy [J]. Colloid Surf., 2017, 158B: 47
[15] Yao X M, Chen L, Chen X F, et al. Intercellular pH-responsive histidine modified dextran-g-cholesterol micelle for anticancer drug delivery [J]. Colloid Surf., 2014, 121B: 36
[16] Lin B B, Su H Y, Jin R R, et al. Multifunctional dextran micelles as drug delivery carriers and magnetic resonance imaging probes [J]. Sci. Bull., 2015, 60: 1272
doi: 10.1007/s11434-015-0840-x
[17] Wu M M, Guo K, Dong H W, et al. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid-phosphorylcholine-chitosan conjugate [J]. Mater. Sci. Eng., 2014, 45C: 162
[18] Mu Y Z, Fu Y M, Li J, et al. Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug [J]. Carbohy. Polym., 2019, 203: 10
doi: 10.1016/j.carbpol.2018.09.020
[19] Nam J P, Lee K J, Choi J W, et al. Targeting delivery of tocopherol and doxorubicin grafted-chitosan polymeric micelles for cancer therapy: In vitro and in vivo evaluation [J]. Colloid Surf., 2015, 133B: 254
[20] Lee J S, Go D H, Bae J W, et al. Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor [J]. J. Control Release, 2007, 117: 204
doi: 10.1016/j.jconrel.2006.11.004 pmid: 17196698
[21] Zhang F R, Fei J, Sun M J, et al. Heparin modification enhances the delivery and tumor targeting of paclitaxel-loaded N-octyl-N-trimethyl chitosan micelles [J]. Inter J. Pharm., 2016, 511: 390
[22] Saadat E, Shakor N, Gholami M, et al. Hyaluronic acid based micelle for articular delivery of triamcinolone, preparation, in vitro and in vivo evaluation [J]. Inter J. Pharm., 2015, 489: 218
[23] Zhong Y N, Goltsche K, Cheng L, et al. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo [J]. Biomaterials, 2016, 84: 250
doi: 10.1016/j.biomaterials.2016.01.049 pmid: 26851390
[24] Shen Y, Li Q, Tu J S, et al. Synthesis and characterization of low molecular weight hyaluronic acid-based cationic micelles for efficient siRNA delivery [J]. Carbohyd. Polym., 2009, 77: 95
doi: 10.1016/j.carbpol.2008.12.010
[25] Morimoto N, Hirano S, Takahashi H, et al. Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle [J]. Biomacromolecules, 2013, 14: 56
doi: 10.1021/bm301286h
[26] Wang X H, Tian Q, Wang W, et al. In vitro evaluation of polymeric micelles based on hydrophobically-modified sulfated chitosan as a carrier of doxorubicin [J]. J. Mater. Sci. Mater. Med., 2012, 23: 1663
doi: 10.1007/s10856-012-4627-1 pmid: 22538726
[27] Li J, Huo M R, Wang J, et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel [J]. Biomaterials, 2012, 33: 2310
pmid: 22166223
[28] Hu F Q, Chen W W, Zhao M D, et al. Effective antitumor gene therapy delivered by polyethylenimine-conjugated stearic acid-g-chitosan oligosaccharide micelles [J]. Gene Ther., 2013, 20: 597
doi: 10.1038/gt.2012.72
[29] Duan K R, Zhang X L, Tang X X, et al. Fabrication of cationic nanomicelle from chitosan-graft-polycaprolactone as the carrier of 7-ethyl-10-hydroxy-camptothecin [J]. Colloid Surf., 2010, 76B: 475
[30] Xie F W, Pollet E, Halley P J, et al. Starch-based nano-biocomposites [J]. Prog. Polym. Sci., 2013, 38: 1590
[31] Jiang C J, Wang H X, Zhang X M, et al. Deoxycholic acid-modified chitooligosaccharide/mPEG-PDLLA mixed micelles loaded with paclitaxel for enhanced antitumor efficacy [J]. Int. J. Pharm., 2014, 475: 60
doi: 10.1016/j.ijpharm.2014.08.037 pmid: 25152167
[32] Yang J H, Gao C M, Lv S Y, et al. Physicochemical characterization of amphiphilic nanoparticles based on the novel starch-deoxycholic acid conjugates and self-aggregates [J]. Carbohydr. Polym., 2014, 102: 838
doi: 10.1016/j.carbpol.2013.10.081 pmid: 24507354
[33] Subramaniam A B, Gregory D, Petkov J, et al. The effect of double-chain surfactants on armored bubbles: a surfactant-controlled route to colloidosomes [J]. Phys. Chem. Chem. Phys., 2007, 9: 6476
pmid: 18060179
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] LIU Jiexiang, LIU Rui, ZHANG Xiaoguang. Preparation and Property of Laponite with Pesticide Intercalation[J]. 材料研究学报, 2021, 35(2): 81-92.
[12] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
No Suggested Reading articles found!