Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (4): 259-270    DOI: 10.11901/1005.3093.2020.219
ARTICLES Current Issue | Archive | Adv Search |
Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis
TANG Kaiyuan1, HUANG Yang2(), HUANG Xiangzhou2, GE Ying2, LI Pinting2, YUAN Fanshu1, ZHANG Weiwei1, SUN Dongping1()
1.School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2.School of Science, Nanjing Forestry University, Nanjing 210037, China
Cite this article: 

TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis. Chinese Journal of Materials Research, 2021, 35(4): 259-270.

Download:  HTML  PDF(6561KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The bacterial cellulose (BC) cultured and purified in the laboratory were oven-dried and freeze-dried respectively and then was carbonized at high temperature. The results show that the oven-dried BC lost the nanofiber structure, and the freeze-drying technology could prevents the nanofibers from stacking and keeps the BC three-dimensional structure. The physicochemical properties such as micromorphology, elemental composition, crystal structure of the carbonized bacterial cellulose (CBC) and thier evolution process with carbonization temperature were systematically investigated. Through Pt-deposition on the conductive carrier of CBC carbon nanofibers, thus an electrode of composite materials could be acquired, which then were used for methanol electrocatalysis. Finally the relationship between the electrochemical performance of CBC-based composite materials and its micro-nano structure and chemical composition was highlighted.

Key words:  organic polymer materials      carbonized bacterial cellulose      physicochemical properties      methanol electrocatalysis      internal relationship     
Received:  07 June 2020     
ZTFLH:  TQ352.4  
Fund: National Natural Science Foundation of China(51702162)
About author:  HUANG Yang, Tel: (025)85428301, E-mail: yanghuang@njfu.edu.cn
SUN Dongping, Tel: (025)84315079, E-mail: hysdp@mail.njust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.219     OR     https://www.cjmr.org/EN/Y2021/V35/I4/259

Fig.1  SEM images of (a, b) BC aerogels dried by freeze drying,(c) natural CBC aerogels and (d) pressed BC derived CBC aerogels
Fig.2  TEM images of (a) dispersed BC hydrogel, (b) freeze-dried BC derived CBC, (c, d) oven-dried BC derived CBC
Fig.3  Thermogravimetric analysis curve of BC
Fig.4  XRD patterns of BC and CBC samples
Fig.5  N2 isotherms adsorption/desorption curves (a) and pore size distributions of CBC samples (b)
Samples

Specific surface area

/m2·g-1

Average pore diameter

/nm

Pore volume

/cm3·g-1

Micropore area

/m2·g-1

CBC-600238.110.220.4535.9

CBC-800

CBC-1000

443.3

490.5

9.48

8.54

0.47

0.50

216.5

225.5

CBC-800-P463.69.380.53207.9
Table 1  Specific surface area and pore structure of CBC samples
Fig.6  Pore size distribution of CBC-800-P
Fig.7  Raman spectra of CBC samples
SamplesID/IGD band width/cm-1
CBC-6000.84254.8
CBC-8001.07203.9
CBC-10001.18155.2
Table 2  D peak half-height width and ID/IG of CBC samples
Fig.8  Electrical conductivity of CBC materials carbonized at 600~1000℃
Fig.9  HRTEM photographs of CBC samples carbonized at (a) 600℃, (b) 800℃ and (c) 1000℃ (with graphite structure marked) and (d) commercially available CNTs
Fig.10  (a) Wide XPS spectra of CBC materials carbonized at 600~1000℃ and C 1s splitting peak diagram of CBC materials carbonized at (b) 600℃, (c) 800℃, (d) 1000℃
SamplesO/C ratiosC-CC=O & O-C-OC-H & C-OHO-C=OC-O-C
CBC-6000.15284.5 (100)287.9 (11.9)285.1 (30.5)--
CBC-8000.10284.5 (100)-285.2 (26.9)289.0 (8.5)286.8 (4.9)
CBC-10000.05284.6 (100)-285.4 (20.6)289.0 (3.8)286.8 (10.2)
Table 3  O/C atomic ratio and the binding energy of each peak of the CBC materials carbonized at 600~1000℃ (the ratio of the area of each peak to the C-C peak in the brackets)
Fig.11  TEM images of Pt-CBC-800 at different magnifications (a, b, d) and Pt-Vulcan (c), and the lattice spacing measured by Gatan Digital Micrograph software (e)
Fig.12  XRD patterns of Pt-CBC composites and Pt-Vulcan
Fig.13  CV curves of Pt-CBC composite and Pt-Vulcan in (a) 0.5 mol/L H2SO4 and (b) 0.5 mol/L H2SO4+1.0 mol/L CH3OH solution
Samples

ECSA

/m2·g-1

IR

/mA·cm-2

IF

/mA·cm-2

Onset potential/mV
Pt-CBC-6005.58.39.0415
Pt-CBC-80053.819.118.5395
Pt-CBC-100065.221.721.4234
Pt-Vulcan32.912.912.8259
Table 4  CV data of catalytic material samples
Fig.14  Chronoamperometric curves of Pt-CBC samples in 0.5 mol/L H2SO4+1.0 mol/L CH3OH
1 Mohanty A K, Vivekanandhan S, Pin J M, et al. Composites from renewable and sustainable resources: Challenges and innovations [J]. Science, 2018, 362: 536
2 Huang Y, Zhu C L, Yang J Z, et al. Recent advances in bacterial cellulose [J]. Cellulose, 2014, 21: 1
3 Wu Z Y, Liang H W, Chen L F, et al. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials [J]. Acc. Chem. Res., 2016, 49: 96
4 Torres F G, Arroyo J J, Troncoso O P. Bacterial cellulose nanocomposites: An all-nano type of material [J]. Mater. Sci. Eng., 2019, 98C: 1277
5 Kaburagi Y, Ohoyama M, Yamaguchi Y, et al. Acceleration of graphitization on carbon nanofibers prepared from bacteria cellulose dispersed in ethanol [J]. Carbon, 2012, 50: 4757
6 Yang J Z, Sun D P, Li J, et al. In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance [J]. Electrochim. Acta, 2009, 54: 6300
7 Zollfrank C, Fromm J. Ultrastructural development of the softwood cell wall during pyrolysis [J]. Holzforschung, 2009, 63: 248
8 Kercher A K, Nagle D C. Microstructural evolution during charcoal carbonization by X-ray diffraction analysis [J]. Carbon, 2003, 41: 15
9 Feng J, Shi Q S, Feng J, et al. Effects of different drying processes on physical properties of bacterial cellulose membranes [J]. Mod. Food Sci. Technol., 2013, 29: 2225
冯劲, 施庆珊, 冯静等. 不同干燥方式对细菌纤维素物理性能的影响 [J]. 现代食品科技, 2013, 29: 2225
10 Terinte N, Ibbett R, Schuster K C. Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques [J]. Lenzinger Berichte, 2011, 89: 118
11 Gea S, Reynolds C T, Roohpour N, et al. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process [J]. Bioresour. Technol., 2011, 102: 9105
12 Kim D Y, Nishiyama Y, Wada M, et al. Graphitization of highly crystalline cellulose [J]. Carbon, 2001, 39: 1051
13 Sevilla M, Fuertes A B. Graphitic carbon nanostructures from cellulose [J]. Chem. Phys. Lett., 2010, 490: 63
14 Lee J K, An K W, Ju J B, et al. Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries [J]. Carbon, 2001, 39: 1299
15 Sugimoto W, Ohnuma T, Murakami Y, et al. Molybdenum oxide/carbon composite electrodes as electrochemical supercapacitors [J]. Electrochem. Solid St., 2001, 4: A145
16 Liu Y, Lu T, Sun Z, et al. Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization [J]. J. Mater. Chem., 2015, 3A: 8693
17 Ishimaru K, Hata T, Bronsveld P, et al. Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin [J]. J. Mater. Sci., 2007, 42: 122
18 Paris O, Zollfrank C, Zickler G A. Decomposition and carbonisation of wood biopolymers—a microstructural study of softwood pyrolysis [J]. Carbon, 2005, 43: 53
19 Cuesta A, Dhamelincourt P, Laureyns J, et al. Raman microprobe studies on carbon materials [J]. Carbon, 1994, 32: 1523
20 Yang D X, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy [J]. Carbon, 2009, 47: 145
21 Ferrari A C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J]. Solid State Commun., 2007, 143: 47
22 Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys. Rev., 2000, 61B: 14095
23 Rhim Y R, Zhang D J, Fairbrother D H, et al. Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature [J]. Carbon, 2010, 48: 1012
24 Rhim Y R, Zhang D J, Rooney M, et al. Changes in the thermophysical properties of microcrystalline cellulose as function of carbonization temperature [J]. Carbon, 2010, 48: 31
25 Kaburagi Y, Ohoyama M, Yamaguchi Y, et al. Acceleration of graphitization on carbon nanofibers prepared from bacteria cellulose dispersed in ethanol [J]. Carbon, 2012, 50: 4757
26 Dumanlı A G, Windle A H. Carbon fibres from cellulosic precursors: a review [J]. J. Mater. Sci., 2012, 47: 4236
27 Chen L F, Huang Z H, Liang H W, et al. Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors [J]. Adv. Funct. Mater., 2014, 24: 5104
28 Jenkins G M, Kawamura K. Polymeric Carbons: Carbon Fibre, Glass and Char [M]. Cambridge: Cambridge University Press, 1976
29 Wang W, Sun Y, Liu B, et al. Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries [J]. Carbon, 2015, 91: 56
30 Cao X Y, Pignatello J J, Li Y, et al. Characterization of wood chars produced at different temperatures using advanced solid-state 13C NMR spectroscopic techniques [J]. Energy Fuels, 2012, 26: 5983
31 Yue Z R, Jiang W, Wang L, et al. Surface characterization of electrochemically oxidized carbon fibers [J]. Carbon, 1999, 37: 1785
32 Matsui T, Okanishi T, Fujiwara K, et al. Effect of reduction-oxidation treatment on the catalytic activity over tin oxide supported platinum catalysts [J]. Sci. Technol. Adv. Mater., 2006, 7: 524
33 Liu H S, Song C J, Zhang L, et al. A review of anode catalysis in the direct methanol fuel cell [J]. J. Power Sources, 2006, 155: 95
34 Liu M M, Zhang R Z, Chen W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications [J]. Chem. Rev., 2014, 114: 5117
35 Huang Y, Wang T H, Ji M Z, et al. Simple preparation of carbonized bacterial cellulose–Pt composite as a high performance electrocatalyst for direct methanol fuel cells (DMFC) [J]. Mater. Lett., 2014, 128: 93
36 Huang H X, Chen S X, Yuan C E. Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation [J]. J. Power Sources, 2008, 175: 166
37 Li Y M, Tang L H, Li J H. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites [J]. Electrochem. Commun., 2009, 11: 846
38 Lee E, Kim S, Jang J H, et al. Effects of particle proximity and composition of Pt-M (M=Mn, Fe, Co) nanoparticles on electrocatalysis in methanol oxidation reaction [J]. J. Power Sources, 2015, 294: 75
39 Koga H, Umemura Y, Ishihara H, et al. Paper-structured fiber composites impregnated with platinum nanoparticles synthesized on a carbon fiber matrix for catalytic reduction of nitrogen oxides [J]. Appl. Catal., 2009, 90B: 699
40 Li W Z, Zhou W J, Li H Q, et al. Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell [J]. Electrochim. Acta, 2004, 49: 1045
41 Sharma S, Ganguly A, Papakonstantinou P, et al. Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol [J]. J. Phys. Chem., 2010, 114C: 19459
42 Pozio A, De Francesco M, Cemmi A, et al. Comparison of high surface Pt/C catalysts by cyclic voltammetry [J]. J. Power Sources, 2002, 105: 13
43 Li Y J, Gao W, Ci L J, et al. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation [J]. Carbon, 2010, 48: 1124
44 Huang Y Q, Huang H L, Liu Y J, et al. Facile synthesis of poly(amidoamine)-modified carbon nanospheres supported Pt nanoparticles for direct methanol fuel cells [J]. J. Power Sources, 2012, 201: 81
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[11] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[12] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[13] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
[14] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
[15] XIONG Xiaoqin, ZHANG Hongquan, FANG Chanyu. Synthesis and Self-assembly Behavior of Amylose-chenodeoxycholic Acid Conjugates[J]. 材料研究学报, 2020, 34(8): 569-574.
No Suggested Reading articles found!