Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (2): 81-92    DOI: 10.11901/1005.3093.2020.215
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Property of Laponite with Pesticide Intercalation
LIU Jiexiang1(), LIU Rui1, ZHANG Xiaoguang2()
1.School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
2.College of Chemistry, Nankai University, Tianjin 300071, China
Cite this article: 

LIU Jiexiang, LIU Rui, ZHANG Xiaoguang. Preparation and Property of Laponite with Pesticide Intercalation. Chinese Journal of Materials Research, 2021, 35(2): 81-92.

Download:  HTML  PDF(14521KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The laponite (LAP) with intercalation of pesticide lambda-cyhalothrin (LCT) was prepared with surfactant of 3-sulphonyl hexadecyldimethylamine (SB) as accessory ingredient. The zwitterionic surfactant of SB, dodecyl dimethyl carboxylbetaine (DCB), N,N-dimethyldodecylamine N-oxide(OA) and cationic surfactant cetyl trimethyl ammonium bromide (CTAB) were separately intercalated into laponite (LAP), and then LCT was solubilized into SB micelles and intercalated into the galleries finally composites of LCT/SB-LAP, LCT/DCB-SB-LAP, LCT/OA-SB-LAP and LCT/CTAB-SB-LAP were obtained. These composites were systematically characterized by powder X-ray diffraction (XRD), liquid state nuclear magnetic resonance (1H NMR), inductively coupled plasma-optical emission spectroscopy (ICP-OES), fourier transform infrared (FT-IR) spectroscopy, thermogravimetry/differential thermal analysis (TGA/DTA) and scanning electron microscope (SEM). The results show that the interlamellar spacings of LCT/SB-LAP, LCT/DCB-SB-LAP, LCT/OA-SB-LAP and LCT/CTAB-SB-LAP were 3.61, 3.13, 3.13 and 3.41 nm, respectively. The LCT companying SB molecules entered into the interlamellar of LAP was confirmed by 1H NMR, ICP-OES and spectroscopy FT-IR. The intercalation mechanism of LCT induced by SB micelles was proposed. The release behavior of LCT from composites was investigated and analyzed. The release rates and cumulative amounts are mainly dependent on type and arrangement of surfactants in the interlamellar spacing.

Key words:  composite      laponite hybrid material      micelle      lambda-cyhalothrin      release behavior     
Received:  08 June 2020     
ZTFLH:  O641  
Fund: National Key Research and Development Program(2016YFD0200707)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.215     OR     https://www.cjmr.org/EN/Y2021/V35/I2/81

Fig.1  Structures of SB, DCB, OA and CTAB
Fig.2  XRD patterns of SB (OA, DCB, CTAB)-LAP, LCT/SB-LAP and LCT/DCB (OA, CTAB) -SB-LAP
Fig.3  Schematic arrangement of surfactants and LCT molecules in the gallery of LAP (a) LCT/SB-LAP; (b) LCT/DCB(OA)-SB-LAP; (c) LCT/CTAB-SB-LAP
Fig.4  1H NMR of LCT/DCB-SB-LAP, LCT/OA-SB-LAP and LCT/CTAB-SB-LAP samples
SamplesSulfur content/%SamplesSulfur content/%
DCB0.250LAP0.190
DCB-LAP0.181LCT/DCB-SB-LAP1.39
SB-LAP8.36LCT/SB-LAP2.97
OA-LAP1.35LCT/OA-SB-LAP2.52
CTAB-LAP0.145LCT/CTAB-SB-LAP1.06
Table 1  Sulfur content of different composites (mass fraction)
Fig.5  FT-IR spectra of the samples (a) LCT/SB-LAP, (b) LCT/DCB-SB-LAP, (c) LCT/OA-SB-LAP, (d) LCT/CTAB-SB-LAP
Fig.6  TGA/DTA curves of the samples. (A-1, A-2) LCT/SB-LAP, SB-LAP, LAP; (B-1, B-2) LCT/DCB-SB-LAP, DCB-LAP; (C-1, C-2) LCT/OA-SB-LAP, OA-LAP; (D-1, D-2) LCT/CTAB-SB-LAP, CTAB-LAP
Fig.7  SEM of the samples (a) SB-LAP; (b) LCT/SB-LAP; (c) DCB-LAP; (d) LCT/DCB-SB-LAP; (e) OA-LAP; (f) LCT/OA-SB-LAP; (g) CTAB-LAP; (h) LCT/CTAB-SB-LAP
Fig.8  Release results for LCT from LCT/SB-LAP (a), LCT/DCB-SB-LAP (b), LCT/OA-SB-LAP (c) and LCT/CTAB-SB-LAP (d) in pH 5.0 and 6.8 buffer solutions
Fig.9  Plots of pseudo second-order model for LCT release from the composites
Fig.10  Plots of parabolic diffusion model for LCT release from the composites
Samples

Zeta potentials

/mV

Samples

Zeta potentials

/mV

DCB12.28SB-28.30
OA-10.14CTAB18.67
DCB-LAP-29.79LCT/DCB-SB-LAP-36.36
SB-LAP-65.48LCT/SB-LAP-63.33
OA-LAP-46.32LCT/OA-SB-LAP-58.62
CTAB-LAP24.10LCT/CTAB-SB-LAP-25.77
Table 2  Zeta potentials of different samples
SamplesRelease mediumPseudo second-order modelParabolic diffusion model
kR2kdR2
LCT/SB-LAPpH 5.02.200.99100.1430.9804
pH 6.81.830.99500.1970.9639
LCT/DCB-SB-LAPpH 5.01.400.99870.09760.9923
pH 6.81.720.99720.1300.9872
LCT/OA-SB-LAPpH 5.01.770.99950.1300.9886
pH 6.81.710.99880.1260.9837
LCT/CTAB-SB-LAPpH 5.02.580.99990.1280.9759
pH 6.82.630.99980.1230.9740
Table 3  Fitting parameters of LCT release from the composites by pseudo second-order and parabolic diffusion models
1 Pieper H, Bosbach D, Panak P J, et al. Eu(III) coprecipitation with the trioctahedral clay mineral, hectorite [J]. Clays Clay Miner., 2006, 54: 45
2 Baskaralingam P, Pulikesi M, Ramamurthi V, et al. Modified hectorites and adsorption studies of a reactive dye [J]. Appl. Clay Sci., 2007, 37: 207
3 Lair V, Carbonnell C, Peyre V, et al. Potentiometric determination of adsorption isotherms of dodecyldimethylamine-N-oxide onto laponite [J]. Colloids Surf. A, 2003, 212: 265
4 Lamont R E, Ducker W A. Surface-induced transformations for surfactant aggregates [J]. J. Am. Chem. Soc., 1998, 120: 7602
5 Thiebault T, Brendlé J, Augé G, et al. Zwitterionic-surfactant modified LAPONITE®s for removal of ions (Cs+, Sr2+ and Co2+) from aqueous solutions as a sustainable recovery method for radionuclides from aqueous wastes [J]. Green Chem., 2019, 21: 5118
6 Esumi K, Yoshida K, Torigoe K, et al. Sorption of 2-naphthol and copper ions by cationic surfactant-adsorbed laponite [J]. Colloids Surf. A, 1999, 160: 247
7 Nair B P, Sindhu M, Nair P D. Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications [J]. Colloids Surf. B, 2016, 143: 423
8 Pacelli S, Paolicelli P, Moretti G, et al. Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications [J]. Eur. Polym. J., 2016, 77: 114
9 Roozbahani M, Kharaziha M, Emadi R. pH sensitive dexamethasone encapsulated laponite nanoplatelets: release mechanism and cytotoxicity [J]. Int. J. Pharm., 2017, 518: 312
10 Wang S G, Wu Y L, Guo R, et al. Laponite nanodisks as an efficient platform for doxorubicin delivery to cancer cells [J]. Langmuir, 2013, 29: 5030
11 Wang G Y, Maciel D, Wu Y L, et al. Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery [J]. ACS Appl. Mater. Interfaces, 2014, 6: 16687
12 Wu Y L, Guo R, Wen S H, et al. Folic acid-modified laponite nanodisks for targeted anticancer drug delivery [J]. J. Mater. Chem. B, 2014, 2: 7410
13 Chen G X, Li D, Li J C, et al. Targeted doxorubicin delivery to hepatocarcinoma cells by lactobionic acid-modified laponite nano-disks [J]. New J. Chem., 2015, 39: 2847
14 Xiao S L, Castro R, Maciel D, et al. Fine tuning of the pH-sensitivity of laponite-doxorubicin nanohybrids by polyelectrolyte multilayer coating [J]. Mater. Sci. Eng. C, 2016, 60: 348
15 Hamilton A R, Roberts M, Hutcheon G A, et al. Formulation and antibacterial properties of clay mineral-tetracycline and-doxycycline composites [J]. Appl. Clay Sci., 2019, 179: 105148
16 Liu J X, Zhang X G, Zhang Y Q. Preparation and release behavior of chlorpyrifos adsolubilized into layered zinc hydroxide nitrate intercalated with dodecylbenzenesulfonate [J]. ACS Appl. Mater. Interfaces, 2015, 7: 11180
17 Zhang H, Pan D K, Zou K, et al. A novel core-shell structured magnetic organic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coated on a magnesium ferrite core for magnetically controlled drug release [J]. J. Mater. Chem., 2009, 19: 3069
18 Jiang W, Su H J, Huo H Y, et al. Synthesis and properties of surface molecular imprinting adsorbent for removal of Pb2+ [J]. Appl. Biochem. Biotechnol., 2010, 160: 467
19 Lu L F, Gao M L, Yang S F, et al. Preparation and adsorption for ciprofloxacin of bentonite modified by zwitterionic surfactant [J]. Chin. J. Mater. Res., 2013, 27: 576
路来福, 高芒来, 杨森锋等. 两性表面活性剂改性膨润土的制备及其对环丙沙星的吸附性能 [J]. 材料研究学报, 2013, 27: 576
20 Jung H, Kim H M, Choy Y B, et al. Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole [J]. Int. J. Pharm., 2008, 349: 283
21 Wang J X, Morales-Collazo O, Wei A. Micellization and single-particle encapsulation with dimethylammoniopropyl sulfobetaines [J]. ACS Omega, 2017, 2: 1287
22 Liu J X, Wang J L, Zhang X G, et al. Preparation and structural characterization of zwitterionic surfactant intercalated into NiZn-layered hydroxide salts [J]. J. Phys. Chem. Solids, 2015, 85: 180
23 Maeda H. A thermodynamic analysis of the hydrogen ion titration of micelles [J]. J. Colloid Interface Sci., 2003, 263: 277
24 Fan N Q, Fan Y X, Tong D S, et al. Study on structure characteristics of organic hectorite hydrothermally synthesized in reaction medium with the presence of surfactants [J]. J. Chem. Eng. Chin. Univ., 2010, 24: 852
范能全, 范永仙, 童东绅等. 表面活性剂介质中有机化锂皂石的水热合成及结构特征 [J]. 高校化学工程学报, 2010, 24: 852
25 Liu J X, Wang J L, Zhang X G. Intercalation, characterization and release behavior of imidacloprid into layered hydroxide salts by coupling of (3-glycidyloxypropyl) trimethoxysilane [J]. Colloids Surf., 2018, 553A: 42
26 Li T, Liu Z L, Xiao M, et al. In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering [J]. RSC Adv., 2017, 7: 54100
27 Tang L C, Wei W, Wang X H, et al. Laponite® nanorods regulating degradability, acidic-alkaline microenvironment, apatite mineralization and MC3T3-E1 cells responses to poly(butylene succinate) based bio-nanocomposite scaffolds [J]. RSC Adv., 2018, 8: 10794
28 Kuźniarska-Biernacka I, Silva A R, Carvalho A P, et al. Organo-laponites as novel mesoporous supports for manganese(III) salen catalysts [J]. Langmuir, 2005, 21: 10825
29 Zhang P, Wang J, Jia Y, et al. Encapsulating spinel nancrystals in Laponite cages and applications in molecular oxidation of cyclohexane [J]. Appl. Clay Sci., 2019, 181: 105226
30 Zhang L, Li J J, Liu T Q. Preparation and properties of water-based cypermethrin microemulsion [J]. J. Yangzhou Univ. (Nat. Sci. Ed.), 2012, 15(2): 38
张龙, 李佳佳, 刘天晴. 水基型氯氰菊酯农药微乳剂的研制与性质 [J]. 扬州大学学报(自然科学版), 2012, 15(2): 38
31 Bi G, Feng Z G, Tian S Z, et al. Infrared spectroscopy study on the photolysis products of pyrthroids [J]. Chin. J. Spectrosc. Lab., 1995, 12(6): 39
毕刚, 冯子刚, 田世忠等. 拟除虫菊酯光解产物的红外图谱研究 [J]. 光谱实验室, 1995, 12(6): 39
32 Ma L Y, Chen Q Z, Zhu J X, et al. Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems [J]. Chem. Eng. J., 2016, 283: 880
33 Zhou C H, Du Z X, Li X N, et al. Structure development of hectorite in hydrothermal crystallization synthesis process [J]. Chinese J. Inorg. Chem., 2005, 21: 1327
周春晖, 杜泽学, 李小年等. 水热体系合成锂皂石结构的演化和影响规律研究 [J]. 无机化学学报, 2005, 21: 1327
34 Wang B X, Zhou M, Rozynek Z, et al. Electrorheological properties of organically modified nanolayered laponite: influence of intercalation, adsorption and wettability [J]. J. Mater. Chem., 2009, 19: 1816
35 Li J Y, Yang Y, Yu Y B, et al. LAPONITE® nanoplatform functionalized with histidine modified oligomeric hyaluronic acid as an effective vehicle for the anticancer drug methotrexate [J]. J. Mater. Chem. B, 2018, 6: 5011
36 Jatav S, Joshi Y M. Chemical stability of laponite in aqueous media [J]. Appl. Clay Sci., 2014, 97-98: 72
37 Dening T J, Thomas N, Rao S S, et al. Montmorillonite and laponite clay materials for the solidification of lipid-based formulations for the basic drug blonanserin: In vitro and in vivo Investigations [J]. Mol. Pharm., 2018, 15: 4148
38 Sanchez-Martin M J, Rodriguez-Cruz M S, Andrades M S, et al. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: Influence of clay type and pesticide hydrophobicity [J]. Appl. Clay Sci., 2006, 31: 216
39 McLauchlin A R, Thomas N L. Preparation and thermal characterisation of poly(lactic acid) nanocomposites prepared from organoclays based on an amphoteric surfactant [J]. Polym. Degrad. Stab., 2009, 94: 868
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!