Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (8): 575-583    DOI: 10.11901/1005.3093.2020.047
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Antibacterial Function of an Cu-bearing Chitosan Coating on Silicone Rubber Surface
WANG Lirong1, GUAN Hongyu1(), CHEN Shanshan2(), ZHANG Bingchun2, YANG Ke2
1 Department of Chemistry, Liaoning University, Shenyang 110036, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

WANG Lirong, GUAN Hongyu, CHEN Shanshan, ZHANG Bingchun, YANG Ke. Preparation and Antibacterial Function of an Cu-bearing Chitosan Coating on Silicone Rubber Surface. Chinese Journal of Materials Research, 2020, 34(8): 575-583.

Download:  HTML  PDF(8022KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to solve the infection caused by the indwelling catheter, an anti-infective Cu-bearing chitosan coating was prepared on the silicone rubber surface. But it is difficult to prepare a coating on the surface of silicone rubber due to its biological inertness. Therefore, chemical grafting was used to activate the silicone rubber by the dopamine pretreatment, which provides abundant functional groups on the activated silicone rubber surface. The surface morphology and surface properties of the silicone rubber after surface activation pretreatment were characterized by the active functional groups. Onto which, subsequently, the Cu-bearing chitosan coating could be chemically grafted, and then the surface morphology was compared for the coatings before and after immersion test. The effectiveness of pretreatment process was assessed by the bonding force between the functionalized coating and the silicone rubber. It follows that the abundant functional groups offered by the pretreatment on the activated silicone rubber surface may be beneficial for enhancing the adhesive strength of the functionalized coating to the silicon rubber. Thereby, the Cu-bearing chitosan coating makes the silicone rubber catheter have good antibacterial function.

Key words:  surface and interface of material      functional coating      stepwise chemical grafting      silicone rubber catheter      bonding ability     
Received:  16 February 2020     
ZTFLH:  O647  
Fund: National Key Research and Development Project(2018YFC1105504);Youth Innovation Promotion Association, Chinese Academy of Sciences(2019194)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.047     OR     https://www.cjmr.org/EN/Y2020/V34/I8/575

Fig.1  XPS spectra of silicone rubber samples treated by stepwise chemical grafting. (a) full spectrum of samples treated by dopamine; (b) N1s and (c) O1s peak-differenation spectrum of samples treated by dopamine; (d) C1s, (e) N1s and (f) O1s peak-differenation spectrum of samples treated by dopamine and glutaraldehyde coupling
Fig.2  Droplets morphology and water contact angle (a) silicone rubber; (b) dopamine treatment; (c) dopamine-glutaraldehyde cross-linking
Fig.3  XPS spectra of chitosan and copper bearing chitosan coatings. (a), (b), (c) and (d) are respectively full spectrum, C1s, N1s, O1s peaks; (e), (f), (g) and (h) are respectively the XPS peak of Cu2p, C1s, N1s, O1s in the copper bearing chitosan coating
Fig.4  Morphologies of coated samples with and without pre-treatment (a) macroscopic morphology without pre-treatment, (b) microscopic morphology without pre-treatment, (c) microscopic morphology of sample without pre-treatment after 3 d immersion, (d) macroscopic morphology with pre-treatment, (e) microscopic morphology with pre-treatment, (e-1) sectional morphology and thickness of coating, (f) microscopic morphology of samples with pre-treatment after 3 d immersion
Fig.5  Adhesion morphology of S.aureus on the surface of the coated samples (a, b) are the morphologies of S.aureus at low and high magnification on the chitosan coating treated samples, (c, d) are the morphologies of S.aureus at low and high magnification on the copper bearing chitosan coating treated samples
Fig.6  Dopamine polymerization formula (a) self-polymerization of dopamine in aqueous solution[25] and (b) formation mechanism of polydopamine[26]
[1] Yang S Q. Advances in medical polymer materials [J]. Scientific and Technological Innovation, 2018, (22): 179
(杨时巧. 医用高分子材料的研究进展 [J]. 科学技术创新, 2018, (22): 179)
[2] Chen Y H. Research and application of functional polymer materials in biomedicine [J]. Chemical Management, 2018, (17): 96
(陈跃华. 功能高分子材料在生物医学中的研究应用 [J]. 化工管理, 2018, (17): 96)
[3] Yin Y X, Li M Q, Zhou C, et al. Advances in the research of implantable medical devices [J]. China Med. Dev., 2018, 33(7): 111
(尹玉霞, 李茂全, 周超等. 植入性医疗器械的研究进展 [J]. 中国医疗设备, 2018, 33(7): 111)
[4] Shen L S, Lin W C. Application of medical polymer in medical devices [J]. China Med. Dev. Inf., 2018, 24(3): 32
(沈丽斯, 林伟聪. 医用高分子在医疗器械方面的应用 [J]. 中国医疗器械信息, 2018, 24(3): 32)
[5] Li F, Zhang G L, Zhang G. Research progress of medical silicone rubber [J]. J. Qingdao Univ. Sci. Technol. (Nat. Sci. Ed.), 2017, 38(Suppl. 2): 96
(李锋, 张桂林, 张刚. 医用硅橡胶的研究进展 [J]. 青岛科技大学学报(自然科学版), 2017, 38(增刊2): 96)
[6] Liu Z S. Study on surface anticoagulant and antibacterial modification of medical polyurethane materials via ultraviolet irradiation [D]. Guangzhou: South China University of Technology, 2018
(刘章拴. 医用聚氨酯材料表面抗凝及抗菌的光辐照改性研究 [D]. 广州: 华南理工大学, 2018)
[7] Smith R S, Zhang Z, Bouchard M, et al. Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment [J]. Sci. Transl. Med., 2012, 4: 153ra132
doi: 10.1126/scitranslmed.aay7675 pmid: 32801146
[8] Lareau R, Bell B, Santerre J, et al. Catheters with high-purity fluoropolymer additives [P]. America, US8603070B1, 2013
[9] Gao X P, Yu F Y, Chen M, et al. Drug release kinetics of rifampicin from composite gel coating on surface of titanium alloy [J]. Orthoped. J. China, 2018, 26: 649
(高旭鹏, 余方圆, 陈明等. 钛合金表面利福平复合凝胶涂层的药物释放动力学研究 [J]. 中国矫形外科杂志, 2018, 26: 649)
[10] Zhou W H, Jia Z J, Xiong P, et al. Bioinspired and biomimetic AgNPs/gentamicin-embedded silk fibroin coatings for robust antibacterial and osteogenetic applications [J]. ACS Appl. Mater. Interfaces, 2017, 9: 25830
doi: 10.1021/acsami.7b06757 pmid: 28731325
[11] Wang H H. The study on PH-responsive catechol-modified chotosan/hyaluronic acid drug-loaded coating [D]. Chengdu: Southwest Jiaotong University, 2018
(王浩浩. pH响应型邻苯二酚改性壳聚糖/透明质酸载药涂层的研究 [D]. 成都: 西南交通大学, 2018)
[12] Xuan L H. Thin films cobtaining silver nanoparticles: their preparation and physical properties [D]. Harbin: Harbin Institute of Technology, 2014
(薛丽红. 银纳米粒子复合材料的制备及性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014)
[13] Kang H, Ma S Y, Gao X H, et al. Preparation of chitosan/silver-copper composite antibacterial agent and its application on silicone rubber matrix [J]. J. Taiyuan Univ. Technol., 2015, 46: 489
(康虹, 马森源, 高向华等. 壳聚糖/银-铜复合抗菌剂的制备及在硅橡胶基体上的应用 [J]. 太原理工大学学报, 2015, 46: 489)
[14] Jin H, Gao S J, Wang D M, et al. The surface structure and anti-adhesion property of Ag-containing coating on vitallium 2000 plus [J]. Chin. J. Stereol. Image Anal., 2017, 22: 202
(金华, 高士军, 王道明等. Vitallium 2000 plus含银抗菌涂层表面特征及抗黏附性的研究 [J]. 中国体视学与图像分析, 2017, 22: 202)
[15] O’Grady N P, Alexander M, Dellinger EP, et al. Guidelines for the prevention of intravascular catheter-related infections. centers for disease control and prevention [J]. MMWR Recomm Rep, 2002, 51: 1
pmid: 11843093
[16] Wolf M P, Salieb-Beugelaar G B, Hunziker P. PDMS with designer functionalities—Properties, modifications strategies, and applications [J]. Progr. Polym. Sci., 2018, 83: 97
[17] Li Y. Preparation of stimuli-responsive drug-loaded antibacterial coatings based on self-assembled colloidal particles [D]. Nanjing: Jiangnan University, 2018
(李杨. 基于大分子自组装构建刺激响应性载药抗菌涂层 [D]. 南京: 江南大学, 2018)
[18] Sun Y. Plasma modification of biomedical polystyrene film surface [D]. Xi’an: Shaanxi Normal University, 2011
(孙瑜. 生物医用聚苯乙烯膜表面的等离子体改性研究 [D]. 西安: 陕西师范大学, 2011)
[19] Yang J. Plasma abduction PET fibre graf crylic acid [D]. Suzhou: Suzhou University, 2008
(杨静. 等离子体诱导PET纤维接枝丙烯酸的研究 [D]. 苏州: 苏州大学, 2008)
[20] Xu B. Application of low temperature plasma technology in surface modification of polymer materials [D]. Nanjing: Nanjing University of Science and Technology, 2008
(徐彪. 低温等离子体技术在高分子材料表面改性中的应用研究 [D]. 南京: 南京理工大学, 2008)
[21] Shao W, Sun X H, Liu J, et al. Explorationon on the hydrophilicity of PVP-modified silicon rubber medical material [J]. New Chem. Mater., 2016, 44(12): 127
(邵雯, 孙小淏, 刘静等. PVP改性硅橡胶医用材料亲水性的探索 [J]. 化工新型材料, 2016, 44(12): 127)
[22] Bumgardner J D, Wiser R, Gerard P D, et al. Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants [J]. J. Biomater. Sci. Polym. Ed., 2003, 14: 423
pmid: 12807145
[23] Ji J H. XPS study on Cu2+-chitosan chelate and adsorption mechanism of chitosan for Cu2+ [J]. Chin. J. Appl. Chem., 2000, 17: 115
(季君晖. Cu2+-壳聚糖螯合物及壳聚糖吸附Cu2+机理的XPS研究 [J]. 应用化学, 2000, 17: 115)
[24] Ji J H. Behaviors and mechanism of chitosan adsorbing Cu2+ in solution [J]. Ion Exchange Adsorpt., 1999, 15: 511
(季君晖. 壳聚糖对Cu2+吸附行为及机理研究 [J]. 离子交换与吸附, 1999, 15: 511)
[25] Wang X. Dopamine-assisted deposition of polyethyleneimn (PEI) for efficient surface functionalization [D]. Chengdu: Southwest Jiaotong University, 2014
(王鑫. 多巴胺辅助沉积聚乙烯亚胺薄膜及其表面生物功能化研究 [D]. 成都: 西南交通大学, 2014)
[26] Chang X J. The investigation of bio-inspired material dopamine on the modification of PVDF membrane [D]. Harbin: Harbin Institute of Technology, 2014
(常晓晶. 仿生材料多巴胺对聚偏氟乙烯超滤膜改性的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014)
[27] Li X B, Liu Y. Control and prepartion to wettability of material surfaces [J]. J. Mater. Eng., 2008, (4): 74
(李小兵, 刘 莹. 材料表面润湿性的控制与制备技术 [J]. 材料工程, 2008, (4): 74)
[28] Yang B. Surface and Interface of Polymer Materials [M]. Beijing: Academic Press, China Standards Press, 2013: 299
(杨彪. 聚合物材料的表现与界面 [M]. 北京: 中国质检出版社, 中国标准出版社, 2013: 29)
[29] Busscher H J, Weerkamp A H. Specific and non-specific interactions in bacterial adhesion to solid substrata [J]. FEMS Microbiol. Rev., 1987, 46: 165
[30] Taylor G T, Zheng D, Lee M, et al. Influence of surface properties on accumulation of conditioning films and marine bacteria on substrata exposed to oligotrophic waters [J]. Biofouling, 1997, 11: 31
[31] Duncan-Hewitt, W C. Nature of the hydrophobic effect. Microbiol Cell Surface Hydrophobicity [M]. Doyle R J, Rosenberg M. Washington D C: ASM Publications, 1990: 39-73
[1] CHENG Hongjie, LIU Huangjuan, JIANG Ting, WANG Fajun, LI Wen. Preparation and Properties of Near-infrared Reflective Superhydrophobic Yellow Coating[J]. 材料研究学报, 2022, 36(9): 687-698.
[2] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[3] YU Zexin, SANG Lixia. Preparation and Formation Mechanism of a Novel TiO2 Nano Bowl Array with Large Hole Diameter[J]. 材料研究学报, 2020, 34(7): 489-494.
No Suggested Reading articles found!