Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (8): 561-568    DOI: 10.11901/1005.3093.2020.021
ARTICLES Current Issue | Archive | Adv Search |
Structure and Thermoelectric Properties of Ag-doped SnSe Thin Films Deposited by Magnetron Sputtering
LI Guipeng1, SONG Guihong1(), HU Fang1, DU Hao2, YIN Lisong3
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Division of Surface Engineering of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China
3 Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 520920, China
Cite this article: 

LI Guipeng, SONG Guihong, HU Fang, DU Hao, YIN Lisong. Structure and Thermoelectric Properties of Ag-doped SnSe Thin Films Deposited by Magnetron Sputtering. Chinese Journal of Materials Research, 2020, 34(8): 561-568.

Download:  HTML  PDF(3533KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ag-doped SnSe thermoelectric thin films were deposited by high vacuum magnetron sputtering using a powder sintered SnSe alloy target. The influence of Ag-doping on the surface and cross sectional morphology, phase composition and thermoelectric properties of the SnSe thin films were investigated by means of X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), as well as Seebeck coefficient/resistance analysis system LSR-3. The results show that the SnSe films are composed of SnSe phase of orthorhombic Pnma structure. The nano-sized Ag3Sn phase exists in the films with Ag-doping. Compared with the film without Ag-doping, the resistivity and absolute value of Seebeck coefficient of the SnSe films with Ag-doping decrease significantly. In a certain doping range, the more Ag-doping is, the smaller the resistivity and the absolute value of the Seebeck coefficient are. Although the absolute value of the Seebeck coefficient of undoped films is high and the resistivity is relatively large, so the power factor is small. For the film with 7.97% Ag (in atomic fraction), the power factor reaches the maximum at 280℃ due to higher Seebeck coefficient absolute value and appropriate resistivity, accordingly, the maximum power factor is about 0.93 mW·m-1·K-2 at 280℃, which is 40% higher than that of undoped films (PF=0.61 mW·m-1·K-2). In conclusion, the appropriate amount of Ag-doping can effectively improve the thermoelectric properties (power factor) of the SnSe thin films by magnetron sputtering.

Key words:  surface and interface in the materials      thermoelectric materials      SnSe films      Ag doping      Seebeck coefficient      resistivity      Ag3Sn phase     
Received:  16 January 2020     
ZTFLH:  O613.52  
Fund: National Natural Science Foundation of China(51772193);Research and Development Program Subsidized Projects in Key Areas of Guangdong Province(2106B01013003)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.021     OR     https://www.cjmr.org/EN/Y2020/V34/I8/561

The same size of Ag particles

Ag/%,

atomic fraction

Sn/%,

atomic fraction

Se/%,

atomic fraction

Ag/(Sn+Se)Sn/Se
0056.4643.5401.297
24.4254.8240.760.0351.345
47.9753.1238.910.0871.365
612.4650.6736.870.1421.374
815.5549.6334.820.1841.425
Table 1  Composition of SnSe film doped with different Ag content
Fig.1  XRD patterns of SnSe thin films deposited with different Ag contents (atomic fraction) (a), local XRD patterns (b) and elemental distribution of 4.42% Ag sample (c)
Sample(atomic fraction)FWHM/(°)β/(rad)2θ/(°)D/nm
4.42% Ag0.7490.013137.67811.15
7.97% Ag0.5850.010237.74414.21
12.46% Ag0.5660.009837.74414.79
15.55% Ag0.6010.010437.70213.81
Table 2  Half height width and diffraction angle of the diffraction peak and grain size of SnSe thin films with different Ag content
Fig.2  Surface morphologies of SnSe thin films deposited with different Ag contents (atomic fraction) (a) 0% Ag, (b) 4.42% Ag, (c) 7.97% Ag, (d) 12.46% Ag, (e) 15.55% Ag
Fig.3  Fracture cross-sections of SnSe thin films deposited with different Ag contents (atomic fraction) (a) 0% Ag, (b) 4.42% Ag, (c) 7.97% Ag, (d) 12.46% Ag, (e) 15.55% Ag
Fig.4  Temperature dependence of the resistivity of SnSe thin films deposited with different Ag contents
Fig.5  Temperature dependence of the Seebeck coefficient of SnSe thin films deposited with different Ag contents
Fig.6  Temperature dependence of the power factor for SnSe thin films deposited with different Ag contents
[1] Zhao J, Xin C N, Han Y M, et al. Thermoelectric properties of Nb-doped lead telluride alloys [J]. Chin. J. Mater. Res., 2015, 29: 115
(赵杰, 辛彩妮, 韩叶茂等. Nb掺杂碲化铅合金的热电性能 [J]. 材料研究学报, 2015, 29: 115)
[2] Zhao L D, Lo S H, Zhang Y S, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals [J]. Nature, 2014, 508: 373
pmid: 24740068
[3] Singh N K, Bathula S, Gahtori B, et al. The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material [J]. J. Alloys Compd., 2016, 668: 152
[4] Zhang L J, Wang J L, Sun Q, et al. Three-Stage inter-orthorhombic evolution and high thermoelectric performance in Ag-doped nanolaminar SnSe polycrystals [J]. Adv. Energy. Mater., 2017, 7: 1700573
[5] Chen Y X, Ge Z H, Yin M J, et al. Understanding of the extremely low thermal conductivity in high-performance polycrystalline SnSe through potassium doping [J]. Adv. Funct. Mater., 2016, 26: 6836
[6] Li J C, Li D, Qin X Y, et al. Enhanced thermoelectric performance of p-type SnSe doped with Zn [J]. Scripta Mater., 2017, 126: 6
[7] Jiang Z S, Qin X Y, Li D, et al. Realizing high thermoelectric performance in slightly Na-doped SnSe polycrystals [J]. Chin. J. Low Temp. Phys., 2017, 39(3): 12
[8] Luo Y B, Cai S T, Hua X, et al. High thermoelectric performance in polycrystalline SnSe via dual-doping with Ag/Na and nanostructuring with Ag8SnSe6 [J]. Adv. Energy Mater., 2018, 9: 1803072
[9] Gong Y, Chang C, Wei W, et al. Extremely low thermal conductivity and enhanced thermoelectric performance of polycrystalline SnSe by Cu doping [J]. Scr. Mater., 2018, 147: 74
[10] Li J R, Xu J T, Wang H X, et al. Enhanced thermoelectric performance in p-type polycrystalline SnSe by Cu doping [J]. J. Mater. Sci. Mater. Electron., 2018, 29: 18727
[11] Zhao Q, Wang D Y, Qin B C, et al. Synergistically optimized electrical and thermal transport properties of polycrystalline SnSe via alloying SnS [J]. J. Solid State Chem., 2019, 273: 85
doi: 10.1016/j.jssc.2019.02.038
[12] Suen C H, Shi D L, Su Y, et al. Enhanced thermoelectric properties of SnSe thin films grown by pulsed laser glancing-angle deposition [J]. J. Mater., 2017, 3: 293
[13] Jia B H, Liu S Y, Li G J, et al. Study on thermoelectric properties of co-evaporated Sn-Se films with different phase formations [J]. Thin Solid Films, 2019, 672: 133
[14] Chen Z J, Shen T, Li K Y, et al. Effect of substrate temperature on structural and thermoelectric properties of RF magnetron sputtered SnSe thin film [J]. Funct. Mater. Lett., 2018, 12: 1950040
[15] Burton M R, Liu T J, Mcgettrick J, et al. Thin film tin Selenide (SnSe) thermoelectric generators exhibiting ultralow thermal conductivity [J]. Adv. Mater., 2018, 30: 1801357
doi: 10.1002/adma.v30.31
[16] Saini S, Mele P, Tiwari A. Influence of the planar orientation of the substrate on thermoelectric response of SnSe thin films [J]. J. Phys. Chem. Solids., 2019, 129: 347
[17] Urmila K S, Namitha T A, Rajani J, et al. Optoelectronic properties and Seebeck coefficient in SnSe thin films [J]. J. Semiconductors, 2016, 37: 93002
[18] Wang X. Preparation and properties of polycrystalline SnSe-based thermoelectric materials [D]. Shenyang: Liaoning University, 2016
(王雪. 多晶硒化锡基热电材料的制备与性能研究 [D]. 沈阳: 辽宁大学, 2016)
[19] Li S H, Zhang X, Liu H L, et al. Synthesis and thermoelectric properties of Ag-doped SnSe [J]. J. Inorg. Mater., 2016, 31: 751
(李松浩, 张忻, 刘洪亮等. Ag掺杂SnSe化合物的制备及热电性能 [J]. 无机材料学报, 2016, 31: 751)
[20] Liu E K, Zhu B S, Luo J S. Semiconductor Physics [M]. 7th ed. Beijing: Electronics Industry Press, 2008: 31
(刘恩科, 朱秉升, 罗晋生. 半导体物理学 [M]. 第7版. 北京: 电子工业出版社, 2008: 31)
[21] Chen C L, Wang H, Chen Y Y, et al. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag [J]. J. Mater. Chem., 2014, 2: 11171
[22] Chere E K, Zhang Q, Dahal K, et al. Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe [J]. J. Mater. Chem., 2016, 4: 1848
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[7] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[8] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[9] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[10] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[11] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[12] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[13] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[14] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[15] XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. 材料研究学报, 2021, 35(11): 820-826.
No Suggested Reading articles found!