Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (9): 673-682    DOI: 10.11901/1005.3093.2019.064
ARTICLES Current Issue | Archive | Adv Search |
Effect of Minor Sc on Microstructure and Properties of Al-Zn-Mg Alloy Weld Joint
LI Zhaoming1,2,JIANG Haichang1(),YAN Desheng1,ZHANG Hongliang2,RONG Lijian1,WU Fei
1. CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
3. Dalian Starts Co. Ltd. , Dalian 116023, China
Cite this article: 

LI Zhaoming,JIANG Haichang,YAN Desheng,ZHANG Hongliang,RONG Lijian,WU Fei. Effect of Minor Sc on Microstructure and Properties of Al-Zn-Mg Alloy Weld Joint. Chinese Journal of Materials Research, 2019, 33(9): 673-682.

Download:  HTML  PDF(27080KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructures, tensile properties and stress corrosion cracking resistance of tungsten inert gas weld joints of Al-Zn-Mg alloy and Al-Zn-Mg alloy with 0.06% (mass fraction) Sc were comparatively investigated by means of optical microscope, scanning electron microscope, transmission electron microscopy, electronic universal testing machine and slow strain rate test. The results show that recrystallization with abnormal grain growth occurred in heat affected zone near the fusion line of the traditional Al-Zn-Mg alloy, while the excellent thermal stability of secondary Al3(Sc, Zr, Ti) phase existed in the Al-Zn-Mg alloy with 0.06% Sc, which could hinder the grain boundary migration during the welding process, thereby inhibit the nucleation and growth of recrystallized grains and then refine the grain size in the matrix near the fusion line. At the same time, the strength of the weld joint for Al-Zn-Mg alloy with 0.06% Sc is obviously higher than that for Al-Zn-Mg alloy, which is mainly related to the grain-boundary strengthening and dispersion strengthening caused by secondary Al3(Sc, Zr, Ti) phase.

Key words:  metallic materials      Al-Zn-Mg alloy      Sc addition      Al3(Sc Zr Ti) phase      recrystallization      tungsten inert gas welding     
Received:  16 January 2019     
ZTFLH:  TG146  
Fund: National Key Research and Development Program of China(2016YFB1200501);Strategic Priority Program of the Chinese Academy of Sciences(XDB22020200);Natural Science Foundation of Liaoning Province(20170540688)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.064     OR     https://www.cjmr.org/EN/Y2019/V33/I9/673

SiFeCuMnMgCrZnTiAl
≤0.25≤0.40≤0.100.05~0.204.50~5.500.05~0.20≤0.100.06~0.20Bal.
Table 1  Composition of ER5356 welding wire (mass fraction, %)
Fig.1  Optical microstructures of Al-Zn-Mg-(Sc) plate edge, (a) 0.00Sc, (b) 0.06Sc
Fig.2  TEM images and SAD patterns of Al-Zn-Mg-(Sc) plate edge (a, c) 0.00Sc, (b, d) 0.06Sc
Alloysσb/MPaσ0.2/MPaδ/%
0.00Sc34029023.6
0.06Sc36130524.6
Table 2  Room-temperature tensile properties of Al-Zn-Mg-(Sc) plates
Fig.3  Tensile fracture morphologies of Al-Zn-Mg-(Sc) plates, (a) 0.00Sc, (b) 0.06Sc
Fig.4  Weld appearance (a) 0.00Sc, (b) 0.06Sc and X-ray radiography images (c) 0.00Sc, (d) 0.06Sc for the welding joints of Al-Zn-Mg-(Sc) alloys
Fig.5  Optical microstructure of WZ (a) 0.00Sc, (b) 0.06Sc and WZ-HAZ transition zone (c) 0.00Sc, (d) 0.06Sc in welding joints of Al-Zn-Mg-(Sc) plates
Fig.6  TEM images and SAD patterns of WZ (a) 0.00Sc, (b) 0.00Sc and HAZ (c, e) 0.00Sc, (d, f) 0.06Sc in the welding joints of Al-Zn-Mg-(Sc) plates
Alloysσb/MPaσ0.2/MPaδ/%
0.00Sc30718115.8
0.06Sc32520914.2
Table 3  Tensile properties of welding joints of Al-Zn-Mg-(Sc) plates
Fig.7  Photos of tensile fractured locations of the welding joints for Al-Zn-Mg-(Sc) plates, (a) on the front surface, (b) on the side surface
Fig.8  Morphologies of WZ (a) 0.00Sc, (b) 0.06Sc and HAZ (c) 0.00Sc, (d) 0.06Sc on tensile fracture surface of the welding joints of Al-Zn-Mg-(Sc) alloys
Fig.9  Typical stain-stress curves of TIG weld joints of Al-Zn-Mg-(Sc) alloys tested in air and in neutral 3.5% NaCl solution
Fig.10  Fracture surfaces of TIG weld joints of Al-Zn-Mg-(Sc) alloys failed in air (a) 0.00Sc, (b) 0.06Sc and in 3.5% NaCl solution (c) 0.11Sc, (d) 0.23Sc
Fig.11  Mass fraction of precipitates in Al-Zn-Mg-(Sc) alloys as a function of temperature (a) 0.00Sc, (b) 0.06Sc
Fig.12  Cross-sectional structure of welding joints of Al-Zn-Mg-(Sc) alloys, (a) 0.00Sc, (b) 0.06Sc
1 ZhuR D, DongW C, LinH Q, et al. Finite element simulation of welding residual stress for buffer beam of CRH2A high speed train [J]. Acta Metall. Sin., 2014, 50: 944
1 朱瑞栋, 董文超, 林化强等. CRH2A型动车组缓冲梁结构焊接残余应力的有限元模拟 [J]. 金属学报, 2014, 50: 944
2 HuangY, DengY L, ChenL, et al. Microstructure, texture and property of extruded 7N01 aluminum alloy plates [J]. Chin. J. Mater. Res., 2014, 28: 541
2 黄 英, 邓运来, 陈 龙等. 7N01铝合金挤压板的微结构、织构和性能 [J]. 材料研究学报, 2014, 28: 541
3 DengY L, WangY F, LinH Q, et al. Effect of extrusion temperature on strength and fracture toughness of an Al-Zn-Mg alloy [J]. Chin. J. Mater. Res., 2016, 30(2): 87
3 邓运来, 王亚风, 林化强等. 挤压温度对Al-Zn-Mg合金力学性能的影响 [J]. 材料研究学报, 2016, 30(2): 87)
4 LiZ M, JiangH C, WangY L, et al. Effect of minor Sc addition on microstructure and stress corrosion cracking behavior of medium strength Al-Zn-Mg alloy [J]. J. Mater. Sci. Technol., 2018, 34: 1172
5 LiZ M, JiangH C, YanD S, et al. Influence of scandium addition on stress corrosion cracking susceptibility of Al-Zn-Mg Alloy in different corrosive environments [J]. Metals, 2018, 8: 225
6 NormanA F, HydeK, CostelloF, et al. Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding [J]. Mater. Sci. Eng., 2003, 354A: 188
7 LathabaiS, LloydP G. The effect of scandium on the microstructure, mechanical properties and weldability of a cast Al-Mg alloy [J]. Acta Mater., 2002, 50: 4275
8 ZakharovV V, RostovaT D. High-strength weldable alloy 1970 based on the Al-Zn-Mg system [J]. Met. Sci. Heat Treat., 2005, 47: 131
9 DengY, PengB, XuG F, et al. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al-Zn-Mg alloys [J]. Mater. Sci. Eng., 2015, 639A: 500
10 GouG Q, HuangN, ChenH, et al. Analysis on corrosion behavior of welded joint of A7N01S-T5 aluminum alloy for high-speed train [J]. Trans. China Weld. Institut., 2011, 32(10): 17
10 苟国庆, 黄 楠, 陈 辉等. 高速列车A7N01S-T5铝合金焊接接头盐雾腐蚀行为分析 [J]. 焊接学报, 2011, 32(10): 17)
11 MengL C, KangX, SunY J, et al. Mechanical properties of 7N01 aluminum friction stir welding joint [J]. Trans. China Weld. Inst., 2012, 33(2): 90
11 孟立春, 康 旭, 孙延军等. 7N01铝合金搅拌摩擦焊接头力学性能 [J]. 焊接学报, 2012, 33(2): 90)
12 ChaoY J, LiH J, LiQ J. The microstructure effect of welding joint on fatigue fracture of A7N01 alloy [J]. Weld. Technol., 2017, 46(8): 5
12 晁耀杰, 李宏佳, 李钦杰. A7N01铝合金焊接接头组织对疲劳断裂的影响 [J]. 焊接技术, 2017, 46(8): 5)
13 ZhaoZ H, XuZ, WangG S. Effect of Sc, Zr, Er in ER5356 welding wire on mechanical properties of welded joint of 7A52 aluminum alloy [J]. Chin. J. Mater. Res., 2013, 27: 287
13 赵志浩, 徐 振, 王高松. ER5356焊丝中Sc、Zr、Er对7A52铝合金焊接性能的影响 [J]. 材料研究学报, 2013, 27: 287
14 SunX Y, ZhangB, LinH Q, et al. Correlations between stress corrosion cracking susceptibility and grain boundary microstructures for an Al-Zn-Mg alloy [J]. Corr. Sci., 2013, 77: 103
15 YangW C, JiS X, WangM P, et al. Precipitation behaviour of Al-Zn-Mg-Cu alloy and diffraction analysis from η' precipitates in four variants [J]. J. Alloys Compd., 2014, 610: 623
16 Sch?belM, PongratzP, DegischerH P. Coherency loss of Al3(Sc, Zr) precipitates by deformation of an Al-Zn-Mg alloy [J]. Acta Mater., 2012, 60: 4247
17 ZhangL, LiX Y, NieZ R, et al. Microstructure and mechanical properties of a new Al-Zn-Mg-Cu alloy joints welded by laser beam [J]. Mater. Des., 2015, 83: 451
18 MaK K, HuT, YangH, et al. Coupling of dislocations and precipitates: Impact on the mechanical behavior of ultrafine grained Al-Zn-Mg alloys [J]. Acta Mater., 2016, 103: 153
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!