Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (9): 687-694    DOI: 10.11901/1005.3093.2016.741
ARTICLES Current Issue | Archive | Adv Search |
Hydration Mechanism of All Solid Waste Cementitious Materials Based on Steel Slag and Blast Furnace Slag
Xiaowei CUI1,2, Wen NI1(), Chao REN1
1 Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
2 Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shangluo University, Shangluo 726000, China
Cite this article: 

Xiaowei CUI, Wen NI, Chao REN. Hydration Mechanism of All Solid Waste Cementitious Materials Based on Steel Slag and Blast Furnace Slag. Chinese Journal of Materials Research, 2017, 31(9): 687-694.

Download:  HTML  PDF(1103KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cementitious materials was prepared with powders of steel slag (SS), blast furnace slag (BFS) and desulfurized gypsum (DG). The influence of SS content on the strength of the concrete composted of all industrial solid wastes was investigated. The hydration mechanism of cementitious materials was characterized by means of XRD, IR, TG-DTA and SEM, while the variation of pH and concentration of the specified ions of cementitious materials were acquired during the hydration process. The results show that when the mass ratio of SS, BFS and DG is m(SS):m(BFS):m(DG)=30:58:12, the concrete possesses a better compressive strength after curing for 3 d, 7 d and 28 d. With the increasing dosage of SS, the pH value and Ca2+ concentration decreased first and then increased. The initial concentration of solutes of silicon (aluminum) was relatively low and then increased later. In the presence of DG, SS and BFS can synergistically promote the hydration and the major hydration products are ettringite (AFt) and calcium silicate hydrate (C-S-H) gels. During the later stage of the hydration process, the quantity of hydration products increased rapidly, forming a composite of C-S-H gel as matrix, within which there existed randomly dispersed needle-like AFt crystallites as strengthening phase, thereby, the hardened cement paste became much dense and hard.

Key words:  inorganic non-metallic materials      steel slag      cementitious materials      hydration mechanism     
Received:  19 December 2016     
ZTFLH:  TB321  
Fund: Supported by National High Technology Research and Development Program of China (No.2012AA062405), Comprehensive Utilization of Tailing Resources Key Laboratory of Shaanxi Province (No.2014SKY-WK001) and Natural Science Foundation of Shaanxi Province (No.2017JM5125)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.741     OR     https://www.cjmr.org/EN/Y2017/V31/I9/687

Fig.1  XRD pattern of steel slag
Material SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O TiO2
Steel slag 18.16 6.24 17.66 42.58 5.26 0.29 0.12 0.12 1.60
Blast furnace slag 26.15 13.49 2.96 41.41 10.09 0.83 0.27 0.35 1.67
Desulfurization gypsum 3.14 1.48 0.71 45.31 0.58 47.26 0.10 0.35 0.07
Table 1  Chemical composition of raw materials (%, mass fraction)
Number Steel
slag
Blast furnace
slag
Desulfurization gypsum
A1 10 78 12
A2 20 68 12
A3 30 58 12
A4 40 48 12
Table 2  Composition of cementitious materials (%, mass fraction)
Fig.2  Influence of proportion of steel slag powder on strength of concrete
Fig.3  Influence of proportion of steel slag powder on pH of cementitious materials
Fig.4  Influence of proportion of steel slag powder on representative concentration of the ions (a) Ca2+; (b) Silicon solutes; (c) Aluminum solutes
Fig.6  IR spectra of pastes at different ages
Fig.7  TG-DTA curves of hydrated pastes at 3 day
Fig.8  TG-DTA curves of hydrated pastes at 28 day
Fig.9  SEM images of pastes at different ages (a) cured for 3 d; (b) cured for 7 d; (c) cured for 28 d; (d) further magnification of Fig.c
Fig.10  Schematic diagram of the hydration reaction mechanism of cementitious materials
Fig.11  Hydration process model of SS(BFS)
Fig.5  XRD pattern of pastes at different ages
[1] National Development and Reform Commission. China Resources Comprehensive Utilization Annual Report (2014) [R]. Recyclable Resources and Circular Economy, 2014(国家发展和改革委员会. 中国资源综合利用年度报告(2014)[R]. 再生资源与循环经济, 2014)
[2] Teng S, Lim T Y D, Sabet Divsholi B. Durability and mechanical properties of high strength concrete incorporating ultrafine ground granulated blast-furnace slag[J]. Construction and Building Materials, 2013(40): 875
[3] Yan P Y, Wang Q.Effect of high temperature curing on the early hydration characteristics of a complex binder containing steel slag[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(6): 790(阎培渝, 王强. 高温养护对钢渣复合胶凝材料早期水化性能的影响[J]. 清华大学学报(自然科学版), 2009, 49(6): 790)
[4] Wang Q, Yan P Y.Hydration properties of basic oxygen furnace steel slag[J]. Construction and Building Materials, 2010, 24(7): 1134
[5] Wang Q, Yan P Y, Kong X M, et al.Compressive strength development and microstructure of cement-asphalt mortar[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26(5): 998
[6] Takashima, Koiehi.Modification of steel making reducing slag[P]. Japan, 11310441 2011
[7] Qiu X J, Ni W, Wang S J.Strength development of steel & iron slag cement without clinker in the thermal curing condition[J]. Metal Mine, 2014 (11):171(仇夏杰, 倪文, 王思静. 无熟料钢渣矿渣水泥在热养护条件下的强度发展[J]. 金属矿山, 2014(11): 171)
[8] Kubo, Masaaki. Inorganic hardened bodies and their manufacture from steel making slag: Japan, 11335153[P].2011-03-10
[9] Cheng R G, Wang Z D, Wang L.Hydration characteristic and micro-morphology of composite cementitious materials with blast furnace slag and steel slag[J]. Journal of Wuhan University of Technology, 2012, 34(5): 25(陈日高, 王阵地, 王玲. 钢渣-矿渣-水泥复合胶凝材料的水化性能和微观形貌[J]. 武汉理工大学学报, 2012, 34(5): 25)
[10] Cui X W, Ni W. Effect of steel slag powder addition on properties of high strength tailings concrete[J]. Metal Mine, 2014(9): 177(崔孝炜, 倪文. 钢渣粉掺入对高强尾矿混凝土性能的影响[J]. 金属矿山, 2014(9): 177)
[11] Wu H, Ni W, Cui X W, et al.Preparation of concrete sleeper using hot steaming steel slag with low autogenous shrinkage[J]. Transactions of Materials and Heat Treatment, 2014, 35(4): 7(吴辉, 倪文, 崔孝炜, 等. 利用热闷钢渣制备低收缩铁路轨枕混凝土[J]. 材料热处理学报, 2014, 35(4): 7)
[12] Xu Y H, Lu W X, Wang X J, et al.Research and development in activation of steel slag activity[J]. Journal of Shanghai University (Natural Science), 2004, 10(1): 92(许远辉, 陆文雄, 王秀娟, 等. 钢渣活性激发的研究现状与发展[J]. 上海大学学报(自然科学版), 2004, 10(1): 92)
[13] Criado M, Femandez-Jimenez A, Palomo A.Alkali activation of fly ash: effect of the SiO2/Na2O ratio Part I: FTIR study[J]. Microporous and Mesoporous Materials, 2007, 106(1-3): 180
[14] Ping Yu, Kirkpatrick R J, Poe B, et al.Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy[J], J. Am. Ceram. Soc., 1999, 82(3): 742
[15] Huang X L, Zhou S B, Liang X Y, et al.FT-IR analysis of polymerization degree of different origin slag[J]. Cement Engineering, 2013, (1): 23(黄兴亮, 周胜波, 梁小英, 等. 不同来源矿渣水化产物聚合度的FT-IR分析[J]. 水泥工程, 2013(1): 23)
[16] Wang Q, Yan P Y.Early hydration characteristics and paste structure of complex binding material containing high-volume steel slag[J]. Journal of the Chinese Ceramic Society, 2008, 36(10): 1406(王强, 阎培渝. 大掺量钢渣复合胶凝材料早期水化性能和浆体结构[J]. 硅酸盐学报, 2008, 36(10): 1406)
[17] Wang Q, Yan P Y.The influence of steel slag on the hydration of cement during the hydration process of complex binder[J]. Science China Technological Sciences, 2011, 54(2): 388
[18] Pan Q L. Discussion of hydration mechanism of granulated blast furnace slag[J]. Cement, 2004(9): 6)(潘庆林. 粒化高炉矿渣的水化机理探讨[J]. 水泥, 2004(9): 6)
[19] Jia Y T.The hydration mechanism of the BFS and FA cement based materials [D]. Nanjing: Southeast University, 2005.(贾艳涛. 矿渣和粉煤灰水泥基材料的水化机理研究[D]. 南京: 东南大学, 2005)
[20] Ionescu D, Meadowcroft T R, Early age hydration kinetics of steel slags[J]. Advances in Cement Research, 2001, 13(1): 21
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!