Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (9): 695-702    DOI: 10.11901/1005.3093.2016.575
ARTICLES Current Issue | Archive | Adv Search |
Effect of Rhenium Addition on Isothermal Oxidation Behavior of a Nickel-base Single Crystal Superalloy
Jianxiu CHANG1, Dong WANG2(), Jiasheng DONG2, Di WANG2, Hanchang WU3, Gong ZHANG2, Langhong LOU2
1 College of Materials Science and Engineering, Xi?an Shiyou University, Xi?an 710065, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Guiyang AECC Power Investment Casting Ltd. Co., Guiyang 550014, China
Cite this article: 

Jianxiu CHANG, Dong WANG, Jiasheng DONG, Di WANG, Hanchang WU, Gong ZHANG, Langhong LOU. Effect of Rhenium Addition on Isothermal Oxidation Behavior of a Nickel-base Single Crystal Superalloy. Chinese Journal of Materials Research, 2017, 31(9): 695-702.

Download:  HTML  PDF(1602KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of rhenium (Re) addition on isothermal oxidation behavior of a nickel-base single crystal superalloy was investigated by means of intermittent measurement of weight change as well as scanning electron microscope (SEM) and X-ray diffractometer (XRD). It was shown that, a scale composed of a (Cr, Ti)-enriched outer oxide layer, an inner Al2O3 layer and an inner TiN layer was formed for both the Re-containing and Re-free alloys, however, the Al2O3 layer was much more complete and the amount of TiN was much less on the Re-containing alloy rather than those on the Re-free alloy. Re was found to lower the oxidation rate of the alloy and improve the stability of the entire oxide scale during long-term oxidation by increasing the activity of Cr and thus increasing the content of Cr2O3 in the scale. Enhancement of Cr2O3 formation may then accelerate the selective oxidation of Al and thus promote the formation of a continuous Al2O3 layer beneath the outer oxide scale, as a result, which inhibited the formation of the inner nitride.

Key words:  metallic materials      nickel-base single crystal superalloy      high temperature oxidation      rhenium (Re)      activity      selective oxidation     
Received:  30 September 2016     
ZTFLH:  TG172.3  
Fund: Supported by National Natural Science Foundation of China (No.51631008) and National Key Research and Development Program of China (No.2016YFB0701403)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.575     OR     https://www.cjmr.org/EN/Y2017/V31/I9/695

Alloys Cr Ta Re Mo W Ti Al Co Ni
E1 Nominal 12.00 4.00 - 1.90 4.00 3.90 3.40 9.00 Bal.
Measured 11.90 3.90 - 1.89 3.84 3.94 3.52 8.97 -
E7 Nominal 12.00 4.00 2.00 1.90 4.00 3.90 3.40 9.00 Bal.
Measured 12.00 4.09 1.97 1.91 4.00 3.99 3.41 9.02 -
Table 1  Nominal and measured compositions of the experimental alloys (%, mass fraction)
Fig.1  SEM micrographs of the single crystal superalloys E1 and E7 after standard heat treatment (a, c) E1, (b, d) E7
Fig.2  Oxidation kinetic curves of the E1 and E7 alloys oxidized at 1000℃
Fig.3  Macroscopic morphologies of the E1 and E7 alloys after isothermal oxidation at 1000℃ (a) E1-4 h, (b) E7-4 h, (c) E1-500 h, (d) E7-500 h
Time Alloys Phase constituents
100 h E1 TiO2, CoAl2O4, Co3O4, γ+γ
E7 TiO2, NiCrO3, Al2O3, Co3O4, γ+γ
500 h E1 TiO2, NiCr2O4, CoAl2O4, Co3O4, γ+γ
E7 TiO2, NiCr2O4, AlTaO4, Al2O3, Co3O4, γ+γ′
Table 2  XRD results of the E1 and E7 alloys after isothermal oxidation at 1000℃
Fig.4  Morphologies and EDS analyses of the oxide scales formed on E1 and E7 alloys after isothermal oxidation at 1000℃ (a) E1-100 h, (b) E7-100 h, (c) E1-500 h, (d) E7-500 h
Al Cr Ti Ni Co Ta O
A - 1.21 26.18 0.49 - - 72.13
B 9.86 6.18 8.84 5.20 0.91 - 68.60
Table 3  EDS results of the regions “A” and “B” in Fig.4 (%, atomic fraction)
Fig.5  Cross-section morphologies of the oxide scales formed on E1 alloy after isothermal oxidation at 1000℃ (a) flat surface region at 100h, (b) oxides cluster at 100 h, (c) flat surface region at 500 h, (d) oxides cluster at 500 h
Al Cr Ti Ni Co Ta O N
A 11.68 16.83 1.70 11.29 4.51 - 53.99 -
B - 1.49 54.92 11.16 1.75 - - 30.67
C 37.16 1.46 1.59 2.64 0.39 - 56.77 -
D 1.97 3.07 17.70 0.99 - - 76.27 -
E - 9.56 7.99 4.54 0.63 11.94 65.33 -
Table 4  EDS results of the regions “A”, “B”, “C”, “D” and “E” in Fig.5 (%,atomic fraction)
Fig.6  Cross-section morphologies of the oxide scales formed on E7 alloy after isothermal oxidation at 1000℃ (a) flat surface region at 100 h, (b) oxides cluster at 100 h, (c) flat surface region at 500 h, (d) oxides cluster at 500 h
Al Cr Ti Ni Co Ta O N
A 5.09 20.81 5.85 2.64 0.43 - 64.80 -
B 41.24 0.26 - 2.72 0.51 - 55.27 -
C - 1.70 59.79 6.41 1.02 1.48 - 29.60
D 3.65 10.51 10.51 9.32 2.10 - 63.92 -
Table 5  EDS results of the regions “A”, “B”, “C” and “D” in Fig.6 (%,atomic fraction)
[1] Reed R C.The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 20
[2] Sajjadi S A, Nategh S, Guthrie R I L. Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111[J]. Mater. Sci. Eng., 2002, 325A: 484
[3] Erickson G L.The development of the CMSX?-11B and CMSX?-11C alloys for industrial gas turbine application [A]. Kissinger R D, Deye D J, Anton D L, et al. Superalloys 1996[M]. Warrendale, PA: TMS, 1996: 45
[4] Bürgel R, Grossmann J, Lüsebrink O, et al.Development of a new alloy for directional solidification of large industrial gas turbine blades [A]. Green K A, Pollock T M, Harada H, et al. Superalloys 2004[M]. Warrendale, PA: TMS, 2004: 25
[5] Zhang J S, Hu Z Q, Murata Y, et al.Design and development of hot corrosion-resistant nickel-base single-crystal superalloys by the d-electrons alloy design theory. 1. Characterization of the phase-stability[J]. Metall. Trans. Phys. Metall. Mater. Sci., 1993, 24A: 2443
[6] Okada I, Torigoe T, Takahashi K, et al.Development of Ni base superalloy for industrial gas turbine [A]. Green K A, Pollock T M, Harada H, et al. Superalloys 2004[M]. Warrendale, PA: TMS, 2004: 707
[7] Giamei A F, Anton D L.Rhenium additions to a Ni-base superalloy: effects on microstructure[J]. Metall. Trans. 1985, 16 A: 1997
[8] Czech N, Schmitz F, Stamm W. Improvement of MCrAlY coatings by addition of rhenium [J]. Surf. Coat. Technol., 1994, 68-68: 17
[9] Beele W, Czech N, Quadakkers W J, et al. Long-term oxidation tests on a Re-containing MCrAlY coating [J]. Surf. Coat. Technol., 1997, 95-94: 41
[10] Phillips M A, Gleeson B.Beneficial effects of rhenium additions on the cyclic-oxidation resistance of β-NiAl+α-Cr alloys[J]. Oxidat. Met., 1998, 50: 399
[11] Pint B A, Haynes J A, More K L, et al.Compositional effects on aluminide oxidation performance: Objectives for improved bond coats [A]. Pollock T M, Kissinger R D, Bowman R R, et al. Superalloys 2000[M]. Warrendale, PA: TMS, 2000: 629
[12] Kawagishi K, Sato A, Kobayashi T, et al.in The Joint Symposium of IMR, KIMM and NIMS, Superalloys and Advanced Processing, 2005
[13] Moniruzzaman M, Murata Y, Morinaga M, et al.Alloy design of Ni-based single crystal superalloys for the combination of strength and surface stability at elevated temperatures[J]. ISIJ Int., 2003, 43: 1244
[14] Moniruzzaman M, Maeda M, Murata Y, et al.Degradation of high-temperature oxidation resistance for Ni-based alloys by Re addition and the optimization of Re/Al content[J]. ISIJ Int., 2003, 43: 386
[15] Huang L, Sun X F, Guan H R, et al.Improvement of the oxidation resistance of NiCrAlY coatings by the addition of rhenium[J]. Surf. Coat. Technol., 2006, 201: 1421
[16] Liu C T, Sun X F, Guan H R, et al.Effect of rhenium addition to a nickel-base single crystal superalloy on isothermal oxidation of the aluminide coating[J]. Surf. Coat. Technol., 2005, 194: 111
[17] Huang L, Sun X F, Guan H R, et al.Effect of rhenium addition on isothermal oxidation behavior of singlecrystal Ni-based superalloy[J]. Surf. Coat. Technol., 2006, 200: 6863
[18] Reed R C, Moverare J J, Sato A, et al.A new single crystal superalloy for power generation applications [A]. Huron E S, Reed R C, Hardy M C, et al. Superalloys 2012[M]. Warrendale, PA: TMS, 2012: 197
[19] Xu X J, Wu Q, Gong S K, et al.Effect of Cr and Re on the oxidation resistance of Ni3Al-base single crystal alloy IC21 at 1100 [A]. Han Y F, Lin J P, Xiao C B, et al. High Performance Structure Materials [M]. Boston: WIT Press, 2013: 582
[20] Tawancy H M.Enhancing the oxidation properties of gamma prime+gamma platinum bond coat by rhenium and yttrium additions for improved adhesion of thermal barrier coatings on nickel-base superalloys[J]. Oxidat. Met., 2015, 84: 491
[21] Giggins C S, Pettit F S.Oxidation of Ni-Cr alloys between 800° and 1200℃[J]. Trans. Metall. Soc. AIME, 1969, 245: 2495
[22] Giggins C S, Pettit F S.Oxidation of Ni-Cr-Al alloys between 1000° and 1200°C[J]. J. Electrochem. Soc., 1971, 118: 1782
[23] Han S, Young D J.Simultaneous internal oxidation and nitridation of Ni-Cr-Al alloys[J]. Oxidat. Met., 2001, 55: 223
[24] Chang J X, Wang D, Zhang G, et al.Effect of Re and Ta on hot corrosion resistance of nickel-base single crystal superalloys [A]. Hardy M, Huron E, Glatzel U, et al. Superalloys 2016[M]. Warrendale, PA: TMS, 2016: 177-185
[25] Chang J X.Effect of Ta and Re on hot corrosion and oxidation behavior of nickel-base single crystal superalloys [D]. Beijing: Institute of Metal Research, Chinese Academy of Sciences, 2016(常剑秀. Ta和Re对镍基单晶高温合金热腐蚀和氧化行为的影响 [D]. 北京: 中国科学院金属研究所, 2016)
[26] Stott F H, Wood G C, Stringer J.The influence of alloying elements on the development and maintenance of protective scales[J]. Oxidat. Met., 1995, 42: 113
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!