|
|
Preparation and Electrorheological Properties of Imidazolium-based Poly (ionic liquid) Microspheres |
Zhigang ZHANG, Hongyang ZHANG, Bonan HAO, Meng WANG, Haiquan ZHANG, Yingdan LIU( ), Zhenlin ZHANG( ) |
State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China |
|
Cite this article:
Zhigang ZHANG, Hongyang ZHANG, Bonan HAO, Meng WANG, Haiquan ZHANG, Yingdan LIU, Zhenlin ZHANG. Preparation and Electrorheological Properties of Imidazolium-based Poly (ionic liquid) Microspheres. Chinese Journal of Materials Research, 2017, 31(9): 679-686.
|
Abstract Imidazolium-based poly(ionic liquid) (PIL) microspheres, poly(1-dodecyl-3-vinylimidazolium tetrafluoroborate) (P[C12VIm][BF4]), were synthesized through a dispersion polymerization process. The structure and morphology of the PIL microspheres were characterized by means of 1H nuclear magnetic resonance, Fourier infrared spectrometer, X- ray diffractometer and scanning electron microscopy. Their electrorheological and dielectric properties were measured by rotational rheometer and broad-band dielectric spectrometer, respectively. The results show that imidazolium-based PIL material is well-defined microspheres and has excellent thermal stability. In this PIL electrorheological system, a remarkable electrorheological effect was observed, in which shear stress, viscosity and dynamic modulus increase with the increasing electric field strength.
|
Received: 11 October 2016
|
|
Fund: Supported by National Natural Science of Foundation of China (Nos.21403186 & 51703193), Natural Science Foundation of Hebei Province (No.E2015203257), and Colleges and Universities Science and Technology Research Project of Hebei Province (No.QN20131070) |
[1] | Marins J A, Soares B G, Silva A A, et al.Electrorheological and dielectric behavior of new ionic liquid/silica systems[J]. J. Colloid Interfaces Sci., 2013, 405: 64 | [2] | Seo Y P, Choi H J, Seo Y.Yield stress analysis of electrorheological suspensions containing core-shell structured anisotropic poly(methyl methacrylate) microparticles[J]. Polym. Adv. Technol., 2015, 26: 117 | [3] | Jang D S, Zhang W L, Choi H J.Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields[J]. J. Mater. Sci., 2014, 49: 7309 | [4] | Yin J B, Chang R T, Shui Y J, et al.Preparation and enhanced electro-responsive characteristic of reduced graphene oxide/polypyrrole composite sheet suspensions[J]. Soft Matter, 2013, 9: 7468 | [5] | Kwon S H, Liu Y D, Choi H J.Monodisperse poly(2-methylaniline) coated polystyrene core-shell microspheres fabricated by controlled releasing process and their electrorheological stimuli-response under electric fields[J]. J. Colloid Interfaces Sci., 2015, 440: 9 | [6] | Tsuda K, Hirose Y, Ogura H, et al.Motion control of pattern electrode by electrorheological fluids[J]. Colloids Surf.: Physicochem. Eng. Asp., 2010, 360A: 57 | [7] | Song X R, Hu A Q, Tan N Y, et al.Influence of amphiprotic groups on the electrorheological behavior of polymers[J]. Mater. Chem. Phys., 2011, 126: 369 | [8] | Fang F F, Choi H J, Seo Y.Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology[J]. ACS Appl. Mater. Interfaces, 2010, 2: 54 | [9] | McIntyre E C, Yang H X, Green P F. Electrorheology of polystyrene filler/polyhedral silsesquioxane suspensions[J]. ACS Appl. Mat. Interfaces, 2012, 4: 2148 | [10] | Jiang J L, Tian Y, Meng Y G.Structure parameter of electrorheological fluids in shear flow[J]. Langmuir, 2011, 27: 5814 | [11] | Ko Y G, Lee H J, Yong J C, et al.Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field[J]. ACS Appl. Mat. Interfaces, 2013, 5: 1122 | [12] | Tian Y, Meng Y G, Wen S Z.Electrorheology of a zeolite/silicone oil suspension under DC fields[J]. J. Appl. Phys., 2001, 90: 493 | [13] | Yin J B, Zhao X P.Preparation and electrorheological activity of mesoporous rare-earth-doped TiO2[J]. Chem. Mater., 2002, 14: 4633 | [14] | Choi H J, Jhon M S.Electrorheology of polymers and nanocomposites[J]. Soft Matter, 2009, 5: 1562 | [15] | Yilmaz H, Zengin H, Unal H I.Synthesis and electrorheological properties of polyaniline/silicon dioxide composites[J]. J. Mater. Sci., 2012, 47: 5276 | [16] | Hiamtup P, Sirivat A, Jamieson A M.Strain-hardening in the oscillatory shear deformation of a dedoped polyaniline electrorheological fluid[J]. J. Mater. Sci., 2010, 45: 1972 | [17] | Kim Y D, Kim H S.Negative electrorheological responses of mono-dispersed polypyrrole-SAN copolymer suspensions[J]. Macromol. Res., 2013, 21: 1153 | [18] | Sedla?ík M, Mrlík M, Pavlínek V, et al.Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles[J]. Colloid Polym. Sci., 2012, 290: 41 | [19] | Xia X, Yin J B, Qiang P F, et al.Electrorheological properties of thermo-oxidative polypyrrole nanofibers[J]. Polymer, 2011, 52: 786 | [20] | Schwarz G, Maisch S, Ullrich S, et al.Electrorheological fluids based on metallo-supramolecular polyelectrolyte-silicate composites[J]. ACS Appl. Mater. Interfaces, 2013, 5: 4031 | [21] | Quadrat O, Stejskal J.Polyaniline in electrorheology[J]. J. Ind. Eng. Chem., 2006, 12: 352 | [22] | Cho M S, Kim J W, Choi H J, et al.Polyaniline and its modification for electroresponsive material under applied electric fields[J]. Polym. Adv. Technol., 2005, 16: 352 | [23] | Geist M F, Boussois K, Smith A, et al.Nanocomposites derived from montmorillonite and metallosupramolecular polyelectrolytes: modular compounds for electrorheological fluids[J]. Langmuir, 2013, 29: 1743 | [24] | Guzel S, Erol O, Unal H I.Polyindene/organo-montmorillonite conducting nanocomposites. II. Electrorheological properties[J]. J. Appl. Polym. Sci., 2012, 124: 4935 | [25] | Gordon C M, Holbrey J D, Kennedy A R, et al.Ionic liquid crystals: hexafluorophosphate salts[J]. J. Mater. Chem., 1998, 8: 2627 | [26] | Marwani H M.Spectroscopic evaluation of chiral and achiral fluorescent ionic liquids[J]. Central Eur. J. Chem., 2010, 8: 946 | [27] | Mecerreyes D.Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes[J]. Prog. Polym. Sci., 2011, 36: 1629 | [28] | Yuan J Y, Mecerreyes D, Antonietti M.Poly(ionic liquid)s: an update[J]. Prog. Polym. Sci., 2013, 38: 1009 | [29] | Lee S, Cummins M D, Willing G A, et al.Conductivity of ionic liquid-derived polymers with internal gold nanoparticle conduits[J]. J. Mater. Chem., 2009, 19: 8092 | [30] | Dong Y Z, Yin J B, Zhao X P.Microwave-synthesized poly(ionic liquid) particles: a new material with high electrorheological activity[J]. J. Mater. Chem., 2014, 2: 9812 | [31] | Varma R S, Namboodiri V V.An expeditious solvent-free route to ionic liquids using microwaves[J]. Chem. Commun., 2001, (7): 643 | [32] | Namboodiri V V, Varma R S.An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves[J]. Tetrahedron Lett., 2002, 43: 5381 | [33] | Tokuda M, Minami H, Mizuta Y, et al.Preparation of micron-sized monodisperse poly(ionic liquid) particles[J]. Macromol. Rapid Commun., 2012, 33: 1130 | [34] | Wang D N, Dimonie V L, Sudol E D, et al.Effect of PVP in dispersion and seeded dispersion polymerizations[J]. J. Appl. Polym. Sci., 2002, 84: 2721 | [35] | Fang F F, Bo M L, Choi H J.Electrorheologically intelligent polyaniline and its composites[J]. Macromol. Res., 2010, 18: 99 | [36] | Yin J B, Zhao X P, Xiang L Q, et al.Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles[J]. Soft Matter, 2009, 5: 4687 | [37] | Cho M S, Choi H J, Jhon M S.Shear stress analysis of a semiconducting polymer based electrorheological fluid system[J]. Polymer, 2005, 46: 11484 | [38] | Klingenberg D J, van Swol F, Zukoski C F. The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit[J]. J. Chem. Phys., 1991, 94: 6170 | [39] | Zhang W L, Piao S H, Choi H J.Facile and fast synthesis of polyaniline-coated poly(glycidyl methacrylate) core-shell microspheres and their electro-responsive characteristics[J]. J. Colloid Interface Sci., 2013, 402: 100 | [40] | Hwang J K, Shin K, Lim H S, et al.The effects of particle conductivity on the electrorheological properties of functionalized MCNT-coated doublet-shaped anisotropic microspheres[J]. Macromol. Res., 2012, 20: 391 | [41] | Dong Y Z, Yin J B, Yuan J H, et al.Microwave-assisted synthesis and high-performance anhydrous electrorheological characteristic of monodisperse poly(ionic liquid) particles with different size of cation/anion parts[J]. Polymer, 2016, 97: 408 | [42] | Ikazaki F, Kawai A, Uchida K, et al.Mechanisms of electrorheology: the effect of the dielectric property[J]. J. Phys.: Appl. Phys., 1998, 31D: 336 | [43] | Cole K S, Cole R H.Dispersion and absorption in dielectrics I. Alternating current characteristics[J]. J. Chem. Phys., 1941, 9: 341 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|