Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (9): 679-686    DOI: 10.11901/1005.3093.2016.594
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Electrorheological Properties of Imidazolium-based Poly (ionic liquid) Microspheres
Zhigang ZHANG, Hongyang ZHANG, Bonan HAO, Meng WANG, Haiquan ZHANG, Yingdan LIU(), Zhenlin ZHANG()
State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
Cite this article: 

Zhigang ZHANG, Hongyang ZHANG, Bonan HAO, Meng WANG, Haiquan ZHANG, Yingdan LIU, Zhenlin ZHANG. Preparation and Electrorheological Properties of Imidazolium-based Poly (ionic liquid) Microspheres. Chinese Journal of Materials Research, 2017, 31(9): 679-686.

Download:  HTML  PDF(852KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Imidazolium-based poly(ionic liquid) (PIL) microspheres, poly(1-dodecyl-3-vinylimidazolium tetrafluoroborate) (P[C12VIm][BF4]), were synthesized through a dispersion polymerization process. The structure and morphology of the PIL microspheres were characterized by means of 1H nuclear magnetic resonance, Fourier infrared spectrometer, X- ray diffractometer and scanning electron microscopy. Their electrorheological and dielectric properties were measured by rotational rheometer and broad-band dielectric spectrometer, respectively. The results show that imidazolium-based PIL material is well-defined microspheres and has excellent thermal stability. In this PIL electrorheological system, a remarkable electrorheological effect was observed, in which shear stress, viscosity and dynamic modulus increase with the increasing electric field strength.

Key words:  organic polymer materials      poly(ionic liquid)      electrorheology      dispersion polymerization      imidazolium     
Received:  11 October 2016     
ZTFLH:  O632.6  
Fund: Supported by National Natural Science of Foundation of China (Nos.21403186 & 51703193), Natural Science Foundation of Hebei Province (No.E2015203257), and Colleges and Universities Science and Technology Research Project of Hebei Province (No.QN20131070)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.594     OR     https://www.cjmr.org/EN/Y2017/V31/I9/679

Fig.1  Synthesis route of P[C12VIm][BF4] microspheres
Fig.2  SEM images of P[C12VIm][BF4] spherical particles (a) low magnification, (b) high magnification
Fig.3  XRD patterns of P[C12VIm][BF4] particles
Fig.4  1H NMR spectrum of [C12VIm][BF4] monomer and P[C12VIm][BF4] particles
Fig.5  FT-IR spectra of (a)[C12VIm][BF4], (b) P[C12VIm][BF4]
Fig.6  TGA curve of P[C12VIm][BF4] particles
Fig.7  P[C12VIm][BF4] spherical particles based ER fluid at a fixed shear rate (γ=1 s-1) in the electric field with a square voltage pulse (t = 30 s)
Fig.8  Shear stress of P[C12VIm][BF4] ER fluid as a function of the shear rate under various electric strengths (T=23℃)
Parameters Electric field strengths / kVmm-1
4.0 3.0 2.0 1.0 0.5
τy 156.340 108.515 76.494 23.612 8.271
t2 0.188 0.268 0.032 0.027 0.406
t3 9.130 0.001 0.005 0.105 0.032
α 1.880 1.568 0.600 0.640 0.626
β 0.967 0.966 0.852 0.812 0.729
η 0.092 0.091 0.089 0.087 0.078
Table 1  Parameters in the equations of CCJ model obtained by fitting the models CCJ to the shear stress curves of P[C12VIm][BF4] based ER fluid
Fig.9  Dynamic yield stress as a function of electric field strength for P[C12VIm][BF4] particles based ER fluid
Fig.10  Flow curves of shear viscosity vs. shear rate for the ER fluid of P[C12VIm][BF4] particles under various electric fields (T=23℃)
Fig.11  Amplitude sweep of the P[C12VIm][BF4] microsphere (15 w) ER fluid at 10 rads-1 of angular frequency under various electric field strengths (storage modulus G', solid symbol and loss modulus G′′, open symbol)
Fig.12  Frequency sweep of the P[C12VIm][BF4] microsphere (15 w) ER fluid with a fixed strain amplitude of 0.003%, which is selected in the linear viscoelastic range of the sample (storage modulus G', solid symbol and loss modulus G′′, open symbol)
Fig.13  Dielectric spectra (Dielectric constant (ε′): solid symbol; Dielectric loss factor (ε″):open symbol) (a) and Cole- Cole equation fitting curve (b) of the P[C12VIM][BF4] particles based ER fluid
[1] Marins J A, Soares B G, Silva A A, et al.Electrorheological and dielectric behavior of new ionic liquid/silica systems[J]. J. Colloid Interfaces Sci., 2013, 405: 64
[2] Seo Y P, Choi H J, Seo Y.Yield stress analysis of electrorheological suspensions containing core-shell structured anisotropic poly(methyl methacrylate) microparticles[J]. Polym. Adv. Technol., 2015, 26: 117
[3] Jang D S, Zhang W L, Choi H J.Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields[J]. J. Mater. Sci., 2014, 49: 7309
[4] Yin J B, Chang R T, Shui Y J, et al.Preparation and enhanced electro-responsive characteristic of reduced graphene oxide/polypyrrole composite sheet suspensions[J]. Soft Matter, 2013, 9: 7468
[5] Kwon S H, Liu Y D, Choi H J.Monodisperse poly(2-methylaniline) coated polystyrene core-shell microspheres fabricated by controlled releasing process and their electrorheological stimuli-response under electric fields[J]. J. Colloid Interfaces Sci., 2015, 440: 9
[6] Tsuda K, Hirose Y, Ogura H, et al.Motion control of pattern electrode by electrorheological fluids[J]. Colloids Surf.: Physicochem. Eng. Asp., 2010, 360A: 57
[7] Song X R, Hu A Q, Tan N Y, et al.Influence of amphiprotic groups on the electrorheological behavior of polymers[J]. Mater. Chem. Phys., 2011, 126: 369
[8] Fang F F, Choi H J, Seo Y.Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology[J]. ACS Appl. Mater. Interfaces, 2010, 2: 54
[9] McIntyre E C, Yang H X, Green P F. Electrorheology of polystyrene filler/polyhedral silsesquioxane suspensions[J]. ACS Appl. Mat. Interfaces, 2012, 4: 2148
[10] Jiang J L, Tian Y, Meng Y G.Structure parameter of electrorheological fluids in shear flow[J]. Langmuir, 2011, 27: 5814
[11] Ko Y G, Lee H J, Yong J C, et al.Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field[J]. ACS Appl. Mat. Interfaces, 2013, 5: 1122
[12] Tian Y, Meng Y G, Wen S Z.Electrorheology of a zeolite/silicone oil suspension under DC fields[J]. J. Appl. Phys., 2001, 90: 493
[13] Yin J B, Zhao X P.Preparation and electrorheological activity of mesoporous rare-earth-doped TiO2[J]. Chem. Mater., 2002, 14: 4633
[14] Choi H J, Jhon M S.Electrorheology of polymers and nanocomposites[J]. Soft Matter, 2009, 5: 1562
[15] Yilmaz H, Zengin H, Unal H I.Synthesis and electrorheological properties of polyaniline/silicon dioxide composites[J]. J. Mater. Sci., 2012, 47: 5276
[16] Hiamtup P, Sirivat A, Jamieson A M.Strain-hardening in the oscillatory shear deformation of a dedoped polyaniline electrorheological fluid[J]. J. Mater. Sci., 2010, 45: 1972
[17] Kim Y D, Kim H S.Negative electrorheological responses of mono-dispersed polypyrrole-SAN copolymer suspensions[J]. Macromol. Res., 2013, 21: 1153
[18] Sedla?ík M, Mrlík M, Pavlínek V, et al.Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles[J]. Colloid Polym. Sci., 2012, 290: 41
[19] Xia X, Yin J B, Qiang P F, et al.Electrorheological properties of thermo-oxidative polypyrrole nanofibers[J]. Polymer, 2011, 52: 786
[20] Schwarz G, Maisch S, Ullrich S, et al.Electrorheological fluids based on metallo-supramolecular polyelectrolyte-silicate composites[J]. ACS Appl. Mater. Interfaces, 2013, 5: 4031
[21] Quadrat O, Stejskal J.Polyaniline in electrorheology[J]. J. Ind. Eng. Chem., 2006, 12: 352
[22] Cho M S, Kim J W, Choi H J, et al.Polyaniline and its modification for electroresponsive material under applied electric fields[J]. Polym. Adv. Technol., 2005, 16: 352
[23] Geist M F, Boussois K, Smith A, et al.Nanocomposites derived from montmorillonite and metallosupramolecular polyelectrolytes: modular compounds for electrorheological fluids[J]. Langmuir, 2013, 29: 1743
[24] Guzel S, Erol O, Unal H I.Polyindene/organo-montmorillonite conducting nanocomposites. II. Electrorheological properties[J]. J. Appl. Polym. Sci., 2012, 124: 4935
[25] Gordon C M, Holbrey J D, Kennedy A R, et al.Ionic liquid crystals: hexafluorophosphate salts[J]. J. Mater. Chem., 1998, 8: 2627
[26] Marwani H M.Spectroscopic evaluation of chiral and achiral fluorescent ionic liquids[J]. Central Eur. J. Chem., 2010, 8: 946
[27] Mecerreyes D.Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes[J]. Prog. Polym. Sci., 2011, 36: 1629
[28] Yuan J Y, Mecerreyes D, Antonietti M.Poly(ionic liquid)s: an update[J]. Prog. Polym. Sci., 2013, 38: 1009
[29] Lee S, Cummins M D, Willing G A, et al.Conductivity of ionic liquid-derived polymers with internal gold nanoparticle conduits[J]. J. Mater. Chem., 2009, 19: 8092
[30] Dong Y Z, Yin J B, Zhao X P.Microwave-synthesized poly(ionic liquid) particles: a new material with high electrorheological activity[J]. J. Mater. Chem., 2014, 2: 9812
[31] Varma R S, Namboodiri V V.An expeditious solvent-free route to ionic liquids using microwaves[J]. Chem. Commun., 2001, (7): 643
[32] Namboodiri V V, Varma R S.An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves[J]. Tetrahedron Lett., 2002, 43: 5381
[33] Tokuda M, Minami H, Mizuta Y, et al.Preparation of micron-sized monodisperse poly(ionic liquid) particles[J]. Macromol. Rapid Commun., 2012, 33: 1130
[34] Wang D N, Dimonie V L, Sudol E D, et al.Effect of PVP in dispersion and seeded dispersion polymerizations[J]. J. Appl. Polym. Sci., 2002, 84: 2721
[35] Fang F F, Bo M L, Choi H J.Electrorheologically intelligent polyaniline and its composites[J]. Macromol. Res., 2010, 18: 99
[36] Yin J B, Zhao X P, Xiang L Q, et al.Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles[J]. Soft Matter, 2009, 5: 4687
[37] Cho M S, Choi H J, Jhon M S.Shear stress analysis of a semiconducting polymer based electrorheological fluid system[J]. Polymer, 2005, 46: 11484
[38] Klingenberg D J, van Swol F, Zukoski C F. The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit[J]. J. Chem. Phys., 1991, 94: 6170
[39] Zhang W L, Piao S H, Choi H J.Facile and fast synthesis of polyaniline-coated poly(glycidyl methacrylate) core-shell microspheres and their electro-responsive characteristics[J]. J. Colloid Interface Sci., 2013, 402: 100
[40] Hwang J K, Shin K, Lim H S, et al.The effects of particle conductivity on the electrorheological properties of functionalized MCNT-coated doublet-shaped anisotropic microspheres[J]. Macromol. Res., 2012, 20: 391
[41] Dong Y Z, Yin J B, Yuan J H, et al.Microwave-assisted synthesis and high-performance anhydrous electrorheological characteristic of monodisperse poly(ionic liquid) particles with different size of cation/anion parts[J]. Polymer, 2016, 97: 408
[42] Ikazaki F, Kawai A, Uchida K, et al.Mechanisms of electrorheology: the effect of the dielectric property[J]. J. Phys.: Appl. Phys., 1998, 31D: 336
[43] Cole K S, Cole R H.Dispersion and absorption in dielectrics I. Alternating current characteristics[J]. J. Chem. Phys., 1941, 9: 341
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
No Suggested Reading articles found!