Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (10): 751-757    DOI: 10.11901/1005.3093.2016.617
ARTICLES Current Issue | Archive | Adv Search |
Anticorrosion Performance of Super-Hydrophobic Complex Film of Graphene/stearic Acid on AZ91 Mg-alloy
Ningning CHEN, Yanhua WANG(), Lian ZHONG, Peipei YANG, Jia WANG
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

Ningning CHEN, Yanhua WANG, Lian ZHONG, Peipei YANG, Jia WANG. Anticorrosion Performance of Super-Hydrophobic Complex Film of Graphene/stearic Acid on AZ91 Mg-alloy. Chinese Journal of Materials Research, 2017, 31(10): 751-757.

Download:  HTML  PDF(920KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A super-hydrophobic complex film was prepared on AZ91 Mg-alloy by a two-step process, i.e. first micro-arc oxidizing (MAO) and then applying blended mixture of graphene/stearic acid (G/SA). The surface wettability, morphology and chemical composition of the super-hydrophobic film were characterized by contact angle measurement, scanning electron microscope and FT-IR spectrometer. After applying the G/SA composite, the hydrophilic porous surface of MAO layer could be transformed into a super-hydrophobic one with static contact angle of 162°. In comparison with the bare Mg-alloy, the corrosion current density decreased and the electrochemical impedance increased by four orders of magnitude for the AZ91 alloy with the super-hydrophobic complex film. The high corrosion resistance can be attributed to the high insulation of the MAO film and the blocking effect of graphene.

Key words:  materials failure and protection      magnesium alloy      micro-arc oxidation      complex film      super-hydrophobic      corrosion behavior     
Received:  19 December 2016     
ZTFLH:  TG174  
Fund: Supported by National Natural Science Foundation of China (Nos.51131005 & 40906039), Promotive Research Fund for Excellent Young and Middle-aged Scientisits of Shandong Province (No.BS2012HZ021)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.617     OR     https://www.cjmr.org/EN/Y2017/V31/I10/751

Fig.1  SEM images and contact angles of MAO layer (a), SA composite film (b) and G/SA composite film (c and d)
Fig.2  FT-IR spectra of SA film and G/SA film
Fig.3  Potentiodynamic polarization curves of samples in 3.5%NaCl solution
Sample Ecorr
/VSCE
icorr
/Acm-2
ba
/mV
bc
/mV
Rp
/Ωcm-2
Bare AZ91 substrate -1.58 7.87×10-5 30.3 127.7 1.35×102
MAO intermediate layer -1.49 1.59×10-6 32.5 240.5 7.82×103
SA composite film -1.46 1.06×10-7 92.7 246.4 2.76×105
G/SA composite film -1.18 2.90×10-9 485.2 242.8 2.42×107
Table 1  Results of potentiodynamic polarization tests of samples in 3.5%NaCl solution
Fig.4  Nyquist images of samples in 3.5%NaCl solution
Fig.5  Equivalent circuits of bare AZ91 substrate (a), MAO layer (b), SA composite coatings and G/SA composite coatings (c)
Fig.6  Bode images of samples in 3.5%NaCl solution
Fig.7  Photographs of samples before and after 168 h immersion in 3.5%NaCl solution: (a) bare AZ91 substrate; (b) MAO layer; (c) superhydrophobic composite film
[1] Z. Yang, J. P. Zhang, G. W. Lorimer, et al., Review on research and development of magnesium alloys[J]. Acta Metallurgica Sinica, 2008, 21(5): 313
[2] I. J. Polmear, Magnesium alloys and applications[J]. Materials Science and Technology, 1994, 10(1): 1
[3] B. L. Mordike, T. Ebert, Magnesium properties — applications — potential[J]. Materials Science and Engineering, 2001, 302(1): 37
[4] C. Zhong, F. Liu, Y. Wu, J. Le, L. Liu, M. He, J. Zhu, W. Hu, Protective diffusion coatings on magnesium alloys: A review of recent developments[J]. Journal of Alloys and Compounds, 2012, 520(13): 11
[5] J. Le, L. Liu, Y. Deng, et al., Interdiffusion kinetics of the intermetallic coatings on AZ91D magnesium alloy formed in molten salts at lower temperatures[J]. Journal of Alloys and Compounds, 2014, 610(27): 173
[6] R. O. Hussein, D. O. Northwood, X. Nie, The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys[J]. Surface and Coatings Technology, 2013, 237(25): 357
[7] J. Cai, F. Cao, L. Chang, et al., The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film[J]. Applied Surface Science, 2011, 257(8): 3804
[8] Y. Tang, X. Zhao, K. Jiang, et al., The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment[J]. Surface and Coatings Technology, 2010, 205(6): 1789
[9] X. Cui, X. Lin, C. Liu, et al., Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy[J]. Corrosion Science, 2015, 90: 402
[10] S. Wang, X. Guo, Y. Xie, et al., Preparation of superhydrophobic silica film on Mg-Nd-Zn-Zr magnesium alloy with enhanced corrosion resistance by combining micro-arc oxidation and sol-gel method[J]. Surface and Coatings Technology, 2012, 213(213): 192
[11] Z. Kang, X. Lai, J. Sang, et al., Fabrication of hydrophobic/super-hydrophobic nanofilms on magnesium alloys by polymer plating[J]. Thin Solid Films, 520(2), 800(2011)
[12] S. V. Nedenkov, S. V. Egorkin, S. L. Sinebryukhov, et al., Formation and electrochemical properties of the superhydrophobic nanocomposite coating on PEO pretreated Mg-Mn-Ce magnesium alloy[J]. Surface and Coatings Technology, 2013, 232(10): 240
[13] C. Wang, B. Jiang, M. Liu, et al., Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy[J]. Journal of Alloys and Compounds, 2015, 621: 53
[14] P. Dhiraj, C. T. Juan, R. H. Robert, et al., Correction to graphene: corrosion-inhibiting coating[J]. American Chemical Society, 2012, 6(5): 1102
[15] L. Gu, J. H. Ding, H. B. Yu, Research in Graphene-based anticorrosion coatings[J]. Progress in Chemistry, 2016, 28(5): 737
[16] T. Yao, B. Siva, S. Mo, Graphene based materials and their composites as coatings[J]., Austin J. Nanomed Nanotechnol., 2013, 1(1): 1003
[17] N. T. Kirkland, T. Schilier, N. Medhekar, et al., Exploring graphene as a corrosion protection barrier[J]. Corrosion Science, 2012, 56(3)
[18] H. Duan, C. Yan, F. Wang, Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D[J]. Electrochimica Acta, 2007, 52(11): 3785
[19] Sun X D, Liu G, Li L Y, et al., Preparation and properties of superhydrophobizted sprayed Zn-Al coating[J]. Chinese Journal of Materials Research, 2015, 29(07): 523(孙小东, 刘刚, 李龙阳, 等, 热喷涂锌铝合金超疏水涂层的制备及性能[J]. 材料研究学报, 2015, 29(07): 523)
[20] W. F. Ng, M. H. Wong, F. T. Cheng, Stearic acid coating on magnesium for enhancing corrosion resistance in Hanks' solution[J]. Surface and Coatings Technology, 2010, 204(11): 1823
[21] J. Y. Jiang, J. L. Xu, Z. H. Liu, et al., Preparation, corrosion resistance and hemocompatibility of the superhydrophobic TiO2 coatings on biomedical Ti-6Al-4V alloys[J]. Applied Surface Science, 2015, 347(1): 591
[22] Y. Liu, X. Yin, J Zhang, et al., A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy[J]. Electrochimica Acta, 2014, 125(12): 395
[23] T. S. Lim, H. S. Ryu, S. Hong, Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation[J]. Corrosion Science, 2012, 62(9): 104
[24] Q. Sun, H. Liu, T. Chen, et al., Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath[J]. Applied Surface Science, 2016, 369: 277
[1] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[2] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[3] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[4] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[5] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] GU Jiaqing, TANG Weineng, XU Shiwei. Microstructure Evolution During Tensile Deformation of an Extruded Mg-0.4Zn Alloy Plate[J]. 材料研究学报, 2021, 35(7): 553-560.
[9] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[10] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[11] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[12] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[13] GUO Tieming, XU Xiujie, ZHANG Yanwen, SONG Zhitao, DONG Zhilin, JIN Yuhua. Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt[J]. 材料研究学报, 2020, 34(6): 434-442.
[14] CHEN Liang, WANG Liping, FENG Yicheng, WANG Lei, ZHAO Sicong. Effect of Bi on Microstructure and Mechanical Properties of Mg-3Al-3Nd Alloy[J]. 材料研究学报, 2020, 34(6): 425-433.
[15] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
No Suggested Reading articles found!