Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (6): 425-433    DOI: 10.11901/1005.3093.2019.599
ARTICLES Current Issue | Archive | Adv Search |
Effect of Bi on Microstructure and Mechanical Properties of Mg-3Al-3Nd Alloy
CHEN Liang, WANG Liping, FENG Yicheng(), WANG Lei, ZHAO Sicong
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
Cite this article: 

CHEN Liang, WANG Liping, FENG Yicheng, WANG Lei, ZHAO Sicong. Effect of Bi on Microstructure and Mechanical Properties of Mg-3Al-3Nd Alloy. Chinese Journal of Materials Research, 2020, 34(6): 425-433.

Download:  HTML  PDF(10143KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Bi on the microstructure and mechanical properties of Mg-3Al-3Nd alloy was investigated by scanning electron microscope (SEM), optical microscope (OM), X-ray diffraction (XRD) and tensile test. The results show that the addition of Bi can refine the microstructure of Mg-3Al-3Nd alloy. When the content (mass fraction) of Bi is 1% the grain size of Mg-3Al-3Nd alloy is the smallest, whilst the grain size reduced from 1854±58 μm for the plain Mg-3Al-3Nd alloy to 890±64 μm for the alloy with 1% Bi addition. The Mg-3Al-3Nd alloy is mainly composed of Al11Nd3 phase distributed at grain boundaries and granular Al2Nd distributed within grains. With the increasing Bi content, the volume fraction of Al11Nd3 phase and Al2Nd phase decrease, and the volume fraction of BiNd phase distributed within grains increases. The mechanical properties of Mg-3Al-3Nd alloy at room temperature and high temperature are significantly improved with addition of Bi. The ultimate tensile strength and elongation at break of Mg-3Al-3Nd alloy with 1% Bi addition at room temperature and high temperature is 167±2.3 MPa and 16.1±0.3%, 136±1.7 MPa and 19.3±0.3%, respectively.

Key words:  metallic materials      magnesium alloy      Bi      microstructure      mechanical property     
Received:  24 December 2019     
ZTFLH:  TG113.12  
Fund: National Natural Science Foundation of China(51804090);Heilongjiang Province Science Foundation(E2018045)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.599     OR     https://www.cjmr.org/EN/Y2020/V34/I6/425

AlloysAlNdBiMg
Mg-3Al-3Nd330Bal.
Mg-3Al-3Nd-1Bi331Bal.
Mg-3Al-3Nd-2Bi332Bal.
Mg-3Al-3Nd-3Bi333Bal.
Table 1  Nominal chemical composition of the test alloy(mass fraction, %)
Fig.1  Dimensions of the tensile specimen (unit: mm)
Fig.2  Low power optical micrographs of Mg-3Al-3Nd-xBi alloy (a) Mg-3Al-3Nd; (b) Mg-3Al-3Nd-1Bi; (c) Mg-3Al-3Nd-2Bi; (d) Mg-3Al-3Nd-3Bi
Fig.3  Grain size of Mg-3Al-3Nd-xBi alloy
Fig.4  XRD diffraction patterns of Mg-3Al-3Nd-xBi alloy
Fig.5  Optical micrographs of the Mg-3Al-3Nd-xBi Alloy (a) Mg-3Al-3Nd; (b) Mg-3Al-3Nd-1Bi; (c) Mg-3Al-3Nd-2Bi; (d) Mg-3Al-3Nd-3Bi
Fig.6  SEM morphology of Mg-3Al-3Nd-xBi alloy (a) (e) Mg-3Al-3Nd; (b) (f) Mg-3Al-3Nd-1Bi; (c) (g) Mg-3Al-3Nd-2Bi; (d) (h) Mg-3Al-3Nd-3Bi
PointMgAlNdBiPhases
A38.4644.5517.000.00Al11Nd3
B58.5426.6514.770.04Al2Nd
C53.8528.6415.510.00Al2Nd
D46.5442.810.580.08Al11Nd3
E4.280.0049.0446.68BiNd
F15.4367.2417.330.00Al11Nd3
G3.850.0047.6548.5BiNd
H45.8942.2611.850.00Al11Nd3
I8.490.0046.5444.97BiNd
Table 2  Results of EDS analysis corresponding to each point in Fig.6 (%, atom fraction)
PhasesMg-AlMg-NdAl-NdBi-MgBi-AlBi-Nd
△H-1.85-10.98-58.74-9.619.31-85.48
Table 3  Formation enthalpies of phases in Mg-Al-Nd-Bi alloy
Fig.7  Tensile properties of Mg-3Al-3Nd-xBi alloy at room temperature
Fig.8  Tensile properties of Mg-3Al-3Nd-xBi alloy at high temperature
Fig.9  Room temperature tensile fracture morphology of as-cast Mg-3Al-3Nd-xBi alloy (a) Mg-3Al-3Nd; (b) Mg-3Al-3Nd-1Bi; (c) Mg-3Al-3Nd-2Bi; (d) Mg-3Al-3Nd-3Bi
Fig.10  High temperature tensile fracture morphology of Mg-3Al-3Nd-xBi alloy (a) Mg-3Al-3Nd; (b) Mg-3Al-3Nd-1Bi; (c) Mg-3Al-3Nd-2Bi; (d) Mg-3Al-3Nd-3Bi
[1] Qian M, Cao P. Discussions on grain refinement of magnesium alloys by carbon inoculation [J]. Scr. Mater., 2005, 52(5): 415
doi: 10.1016/j.scriptamat.2004.10.014
[2] Wang B J, Xu D K, Wang S D, et al. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Int. J. Fatigue, 2019, 120: 46
doi: 10.1016/j.ijfatigue.2018.10.019
[3] Wang N, Bai P C, Hou X H, et al. Effect of Nd addition on microstructure and corrosion resistance of AZ91 magnesium alloy [J]. Chin. J. Mater. Res., 2011, 25(2): 215
(王娜, 白朴存, 侯小虎, 等. Nd对AZ91镁合金显微组织和耐腐蚀性能的影响 [J]. 材料研究学报, 2011, 25(2): 215)
[4] Wang B J, Luan J Y, Xu D K, et al. Research Progress on the Corrosion Behavior of Magnesium-Lithium-Based Alloys: A Review [J]. Acta Metall. Sin-Engl., 2019, 32: 1
doi: 10.1007/s40195-018-0847-9
[5] Balasubramani N, Srinivasan A, Pillai U T S. Effect of Pb and Sb additions on the precipitation kinetics of AZ91 magnesium alloy [J]. Mater. Sci. Eng. A., 2006, 457(1): 275
doi: 10.1016/j.msea.2006.12.132
[6] Wang B J, Xu D K, Wang S D, et al. Recent progress in the research about fatigue crack initiation of Mg alloys under elastic stress amplitudes: A review [J]. Front. Mech. Eng., 2019, 14: 113
doi: 10.1007/s11465-018-0482-1
[7] Guo X T, Li P J, Liu S X, et al. Development status and prospect of heat resistant rare earth-magnesium alloy [J]. Foundry, 2002, 51(2): 68
(郭旭涛, 李培杰, 刘树勋等.稀土耐热镁合金发展现状及展望 [J]. 铸造, 2002, 51(2): 68)
[8] Yuan G Y, Zhang W M, Sun Y S. Improvement of mechanical properties of Mg-Al based alloy by bismuth alloying [J]. J. Southeast Univ., 1999, 29(3): 115
(袁广银, 张为民, 孙扬善. Mg-Al基合金加铋合金化对其力学性能的改善作用 [J]. 东南大学学报, 1999, 29(3): 115)
[9] Li K J, Li Q A, Xie J C, et al. Research and application of rare earth in heat resistant magnesium alloy [J]. Chin. Rare Earths, 2009, 30(3): 79
(李克杰, 李全安, 谢建昌等. 稀土在耐热镁合金中的研究应用[J]. 稀土, 2009, 30(3): 79)
[10] Dong F, Liu Y, Guo S L, et al. Effects of Yttrium on microstructure and mechanical properties of AZ91D magnesium alloy [J]. Light Alloy Fab. Technol. 2018, 146(5): 63
(董方, 刘月, 郭升乐等. 稀土元素Y对AZ91D镁合金显微组织和力学性能的影响 [J]. 轻合金加工技术, 2018, 146(5): 63)
[11] Li W W. Synergistic effects of Nd and Y on microstructure and properties of AZ31 magnesium alloy [D]. Tianjin: Tianjin University, 2013
(李文文. Nd和Y复合添加对AZ31镁合金组织与性能的影响 [D]. 天津: 天津大学, 2013)
[12] Ren W L, Li Q A, Shi Y J, et al. Effect of Bismuth addition on the microstructure and mechanical properties of AZ81 magnesium Alloy [J]. Rare Metal. and Cemented Carbides, 2010, 38(3): 35
(任文亮, 李全安, 石雅静等. Bi对AZ81镁合金组织和力学性能的影响 [J]. 稀有金属与硬质合金, 2010, 38(3): 35)
[13] Li T. Influence of Sm, Bi, Zn and casting process on microstructures and mechanical properties of Mg-6Al magnesium alloy [D]. Changsha: Central South University, 2013
(李涛. Sm、Bi、Zn及压铸对Mg-6Al系镁合金组织和性能的影响 [D]. 长沙: 中南大学, 2013)
[14] Liu D. Effect of A1-Nd compound on the microstructure and mechanical properties of Mg-A1 magnesium alloys [D]. Chongqing: Chongqing University, 2018
(刘丹. Al-Nd化合物对Mg-Al系镁合金显微组织和力学性能的影响 [D]. 重庆: 重庆大学, 2018)
[15] Bai Y Y, Wei R F, Dong F, et al. Effect of neodymium on the as-cast microstructure andmechanical properties of AZ31 magnesium alloy [J]. J. Mater. Metall., 2017, 16(1): 54
(柏媛媛, 魏汝飞, 董方等. 稀土Nd对AZ31镁合金铸态组织和力学性能的影响 [J]. 材料与冶金学报, 2017, 16(1): 54)
[16] Wang J, Yang J, Wu Y, Zhang H, et al. Microstructures and mechanical properties of as-cast Mg-5Al-0.4Mn-xNd(x=0, 1, 2 and 4) alloys [J]. Mater. Sci. Eng. A, 2008, 472(1-2): 332
doi: 10.1016/j.msea.2007.03.036
[17] Cheng R J, Dong H W, Liu W J, et al. Effect of Al-and Ce-content on microstructure of Mg-Al magnesium alloys [J]. Chin. J. Mater. Res., 2017, 31(10): 738
(程仁菊, 董含武, 刘文君等. Al和Ce的含量对Mg-Al合金组织的影响 [J]. 材料研究学报, 2017, 31(10): 738)
[18] Huang W X, Yan H. Calculation of thermodynamic parameters of Mg-Al-Y alloy [J]. J. Wuhan Univ. Technol., 2014, 29: 374
doi: 10.1007/s11595-014-0924-5
[19] Dai J H. Investigation on diffusion behaviors of alloy elements in magnesium [D]. Chongqing: Chongqing University, 2016
(戴甲洪. 合金元素在镁合金中扩散行为的研究 [D]. 重庆: 重庆大学, 2016)
[20] Wang Y X, Fu J W, Yang Y S. Effect of Nd addition on microstructures and mechanical properties of AZ80 magnesium alloys [J]. Trans. Nonferr. Metal. Soc., 2012, 22(6): 1322
doi: 10.1016/S1003-6326(11)61321-6
[21] Qiu D, Zhang M X, Kelly P M. Crystallography of heterogeneous nucleation of Mg grains on Al2Y nucleation particles in an Mg-10%Y alloy [J]. Scr. Mater., 2009, 61(3): 312
doi: 10.1016/j.scriptamat.2009.04.011
[22] Easton M, Stjohn D. Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms-a review of the literature [J]. Metall. Mater. Trans. A, 1999, 30(6): 1613
doi: 10.1007/s11661-999-0098-5
[23] Zhou Y, Mao P L, Wang Z, et al. Investigations on hot tearing behavior of Mg-7Zn-xCu-0.6Zr alloys [J]. Acta Metall. Sin., 2017, 53: 851
doi: 10.11900/0412.1961.2016.00476
(周野, 毛萍莉, 王志等. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究 [J]. 金属学报, 2017, 53: 851)
doi: 10.11900/0412.1961.2016.00476
[24] Zhang J, Zhang Z H. Magnesium Alloy and Its Application [M]. Beijing: Chemical Industry Press Mater., 2004:67
(张津, 章宗和. 镁合金及应用 [M]. 北京: 化学工业出版社, 2004: 67)
[25] Yahia A, Dong Q, Jiang B, et al. Current research progress in grain refinement of cast magnesium alloys: A review article [J]. J. Alloy. Compd., 2015, 619: 639
doi: 10.1016/j.jallcom.2014.09.061
[26] Zhang J H, Wang J, Qiu X, et al. Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg-4Al-based alloy [J]. J. Alloy. Compd., 2008, 464(1-2): 556
doi: 10.1016/j.jallcom.2007.10.056
[27] Yang P, Hu Y S, Cui F E, et al. Texture investigation on the deformation mechanisms inmagnesium alloy AZ31 deformed at high temperatures [J]. Chin. J. Mater. Res., 2004, 18(1): 53
(杨平, 胡轶嵩, 崔凤娥等. 镁合金AZ31高温形变机制的织构分析 [J]. 材料研究学报, 2004, 18(1): 53)
[28] Keyvani M, Nahmudi R, Nayyeri G. Effect of Bi, Sb and Ca additions on the hot hardness and microstructure of cast Mg-5Sn alloy [J]. Mater. Sci. Eng. A, 2010, 527(29-30): 7714
doi: 10.1016/j.msea.2010.08.045
[29] Zhou D W, Liu J S, Lu Y Z, et al. Mechanism of Sb, Bi alloying on improving heat resistance properties of Mg-Al alloy [J]. Trans. Nonferr. Metal. Soc., 2008, 18(1): 118
(周惦武, 刘金水, 卢远志等. Sb、Bi合金化提高Mg-Al系合金抗蠕变性能的机理 [J]. 中国有色金属学报, 2008, 18(1): 118)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!