Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (10): 743-750    DOI: 10.11901/1005.3093.2015.602
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Property of Bi-continuous Phase TiC/Fe Composite
Jianhong LAI, Yang ZHOU(), Yong ZHENG, Jiaqi WANG, Zhenying HUANG, Shibo LI, Hongxiang ZHAI
School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Cite this article: 

Jianhong LAI, Yang ZHOU, Yong ZHENG, Jiaqi WANG, Zhenying HUANG, Shibo LI, Hongxiang ZHAI. Preparation and Property of Bi-continuous Phase TiC/Fe Composite. Chinese Journal of Materials Research, 2017, 31(10): 743-750.

Download:  HTML  PDF(1479KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Porous TiC-ceramics of three-dimensional network structure were prepared by organic precursor impregnation method using polyurethane sponge as precursor with a small amount of powders of reduced iron, carbonyl iron and titanium as the sintering additives. The influence of the pore size of polyurethane sponge and times of slurry-applying on the porosity and skeleton diameter of porous TiC-ceramics was investigated. Then composite of Bi-continuous phase TiC/Fe was prepared by pressureless infiltration method. The phase composition, the macro- and micro-structure as well as the hardness distribution of the composite were assessed. Results show that the prepared porous TiC-ceramics is integrated in structure, while their porosity and size of TiC-skeleton are controllable. The composite of TiC/Fe exhibited a perfect bi-continuous phase structure with a good combination between TiC and Fe. A gradient hardness distribution of two-phase combining areas was observed.

Key words:  composites      bi-continuous phase      organic precursor impregnation      pressureless infiltration      TiC     
Received:  27 October 2016     
ZTFLH:  TB333  
Fund: Supported by National Natural Science Foundation of China (Nos.51472024 & 51372015)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.602     OR     https://www.cjmr.org/EN/Y2017/V31/I10/743

Raw material Purity / % Particle size Content / %
TiC powder 95 2~3 μm 75
Reduced iron powder 99 400 mesh 8
Carbonyl iron powder 99 3~5 μm 2
Ti powder 99.5 200 mesh 15
Table 1  Purity (mass fraction), particle size and content (mass fraction) of raw materials in porous ceramics
Fig.1  Figure of pressureless infiltration
Fig.2  Morphology and structure of the skeleton of porous ceramics with different PPI value. (a, b) 30PPI, (c, d) 45PPI, (e, f) 90PPI
Fig.3  Cross-sectional morphology of the Porous ceramics skeleton
Fig.4  XRD figure of the porous ceramic before and after sintering
Phase TiC Fe Ti Fe3C
Before sintering 75% 10% 15% 0
After sintering 90% 0% 0% 10%
Table 2  Mass fraction of each phase in porous ceramic before and after sintering
Fig.5  Macrostructures of porous ceramics prepared with 30 PPI sponge through different coating times (a) 2, (b) 3, (c) 4 and (d) 5
Fig.6  Relations between the diameter of porous ceramic skeleton and the coating times
Fig.7  Relations between the porosity of porous ceramic and the coating times
Fig.8  Back scattering SEM photos of TiC/Fe composite materials' profile
Fig.9  XRD figure of the cross-sectional of the TiC/Fe composite materials
Fig.10  Vickers hardness indentations of the test composites (a) ceramic skeleton; (b) iron matrix; (c) combination region between skeleton and matrix
Fig.11  Vickers hardness values in different areas of the composites
[1] Zhang D, Zhang G D, Li Z Q.The current state and trend of metal matrix composites[J]. Materials China, 2010, 29(4): 2(张荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势[J]. 中国材料进展, 2010, 29(4): 2)
[2] Wang H Y, Jiang Q C, Zhao Y Q.Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites[J]. Mater. Sci. Eng. A, 2004, 372: 109
[3] Trojanova Z, Lukac P, Riehemann W, et al.Study of relaxation of residual internal stress in Mg composites by internal friction[J]. Mater. Sci. Eng. A, 2002, 324: 122
[4] Xu Z R, Chawla K K, Neuman A, et al.Stiffness loss and density decrease due to thermal cycling in an alumina fiber/magnesium alloy composites[J]. Mater. Sci. Eng. A, 1995, 75: 203
[5] Konopka K, Olszówka-Myalska A, Szafran M.Ceramic-metal composites with an interpenetrating network[J]. Mater. Chem. Phys., 2003, 81: 329
[6] Zhang W, Dai B Y, Shang J L, et al.Preparation technology and application prospects of three dimensional continuous Ceramic metal composite materials[J]. Special Casting & Nonferrous Alloys, 2013, 33(1): 64(张伟, 戴斌煜, 商景利等. 三维连续网络陶瓷金属复合材料的制备及应用前景[J]. 特种铸造及有色合金, 2013, 33(1): 64)
[7] Zhang J S, Cao X M, Hu W P. Application of double continuous-phase composite in braking disc and lining for high speed train [J]. Electric Drive for Locomotives, 2003, Sup: 39(张劲松, 曹小明, 胡宛平. 双连续相复合材料在高速列车制动盘及闸片中的应用[J]. 机车电传动, 2003, 增刊: 39)
[8] Jiang Q C, Wang H Y, Wang J G, et al.Fabrication of TiCP/Mg composites by the thermal explosion synthesis reaction in molten magnesium[J]. Mater. Lett., 2003, 57: 2580
[9] Filho A L, Atkinson H, Jones H.Hot isostatic pressing of metal reinforced metal matrix composites[J]. J. Mater. Sci., 1998, 33: 517
[10] Ferkel H, Mordike B L.A-structure materials properties microstructure and processing[J]. Mater. Sci. Eng. A, 2001, 298: 193
[11] Lemster K, Delporte M, Graule T, et al.Activation of alumina foams for fabricating MMCs by pressureless infiltration[J]. Ceramics International, 2007, 33: 1179
[12] Wang H Y, Jiang Q C, Li X L, et al.Fabrication of TiC particulate reinforced magnesium matrix composites[J]. Scrpta. Mater., 2003, 48: 1349
[13] Wang J, Fu S J, Ding Y C.Microstructure and wear property of TiC particles reinforced iron matrix composite produced in-situ[J]. Journal of Sichuan University (Engineering Science) , 2008, 40(5): 111(王静, 伏思静, 丁义超. 原位合成TiC/Fe基复合材料的组织结构和磨损性能[J]. 四川大学学报, 2008, 40(5): 111)
[14] Srinivasa R B, Jayaram V.Pressureless infiltration of Al-Mg based alloys into Al2O3 preforms: mechanisms and phenomenology[J]. Acta Mater., 2001, 49: 2373
[15] Chen W P, Yang S F, Han M Y.Research development of ceramic/Fe-based alloy composites[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(2): 257(陈维平, 杨少锋, 韩孟岩. 陶瓷/铁基合金复合材料的研究进展[J]. 中国有色金属学报, 2010, 20(2): 257)
[16] Chen H Y, Zou Z G, Mai L Q.Progress in research of TiC composition[J]. Powder Metallurgy Industry, 2001, 11(3): 38(陈寒元, 邹正光, 麦立强. TiC复合材料的研究进展[J]. 粉末冶金工业, 2001, 11(3): 38)
[17] Hou S Z, Bao C G, Fu Q R, et al.Interfacial characteristics and abrasive wear behavior of cemented carbide/high-Cr white cast iron composite[J]. Journal of Xi’an Jiaotong University, 2012, 46(5): 45(侯书增, 鲍崇高, 付青然等. 硬质合金/高铬铸铁基复合材料的界面特性及磨损性能研究[J]. 西安交通大学学报, 2012, 46(5): 45)
[18] Zhang J S, Cao X M, Tian C, et al.Preparation method of foam SiC/metal co-continuous phase composite friction material components [P]. China, ZL200610046242.X, 2006(张劲松, 曹小明, 田冲等. 泡沫碳化硅/金属双连续相复合摩擦材料构件的制备方法 [P]. 中国, ZL200610046242.X, 2006)
[19] Ren Z H, Jin P, Cao X M, et al.Preparation and performance of SiC foam ceramic/Fe matrix Co-continuous phase composites[J]. Chinese Journal of Materials Research, 2014, 28(11): 815(任志恒, 金鹏, 曹小明等. SiC泡沫陶瓷/Fe基双连续相复合材料的制备和性能[J]. 材料研究学报, 2014, 28(11): 815)
[20] Liu Y, Huang Z R, Dong S M, et al.The effect of surface treatment on the hanging pulp properties of silicon carbide foam ceramic[J]. Journal of Inorganic Materials, 2006, 21(5): 1185(刘岩, 黄政仁, 董绍明等. 表面处理对碳化硅泡沫陶瓷挂浆性能的影响[J]. 无机材料学报, 2006, 21(5): 1185)
[21] Wang S R, Geng H R, Gao S P.Technology and the progress of preparing network ceramic precast body of metal matrix composites by precursor impregnation method[J]. Shandong Ceramics, 2005, 28(1): 9(王守仁, 耿浩然, 高绍平. 前驱体浸渍法制备金属基复合材料网络陶瓷预制体的工艺及进展[J]. 山东陶瓷, 2005, 28(1): 9)
[22] Lin J P, Zhang Y, Chen G L.Effect of fabrication technology on the structures and properties of TiC ceramic foam[J]. Powder Metallurgy Technology, 2000, 18(1): 12(林均品, 张勇, 陈国良. 制备工艺对TiC泡沫陶瓷结构及性能影响[J]. 粉末冶金技术, 2000, 18(1): 12)
[23] Jian F Q, He G F, Yu H.Study of improving the iron alloy sintered density by adding the carbonyl iron powder[J]. Powder Metallurgy Technology, 1994, 12(4): 276(骞福全, 何高风, 于海. 添加羰基铁粉提高铁合金烧结密度的研究[J]. 粉末冶金技术, 1994, 12(4): 276)
[1] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[2] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[3] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[4] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
[8] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[9] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] LIU Tao, YIN Zhiqiang, LEI Jingfa, GE Yongsheng, SUN Hong. Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression[J]. 材料研究学报, 2023, 37(5): 391-400.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] QIAN Chunhua, CUI Haitao, WEN Weidong. Investigation on Thermo-mechanical Fatigue Behavior of GH4169 Alloy[J]. 材料研究学报, 2023, 37(2): 145-151.
[14] ZHANG Jiajun, LUO Xinghong, KONG Yafei, ZHANG Guiyuan, LI Yang. Effect of Gravity on Primary Phase Morphology and Peritectic Reaction of Sn-20% Ni Alloy[J]. 材料研究学报, 2023, 37(2): 111-119.
[15] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
No Suggested Reading articles found!