Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (10): 737-742    DOI: 10.11901/1005.3093.2016.480
ARTICLES Current Issue | Archive | Adv Search |
Effect of Al- and Ce-content on Microstructure of Mg-Al Magnesium Alloys
Renju CHENG1(), Hanwu DONG1(), Wenjun LIU1, Bin JIANG1,2, Shutao XIONG2, Bo LIU3, Fusheng PAN1,2
1 Chongqing Academy of Science and Technology, Chongqing 401123, China
2 College of Materials Science & Engineering, Chongqing University, Chongqing 400030, China
3 Chongqing Application Technology Co. Ltd, Chongqing 401123, China
Cite this article: 

Renju CHENG, Hanwu DONG, Wenjun LIU, Bin JIANG, Shutao XIONG, Bo LIU, Fusheng PAN. Effect of Al- and Ce-content on Microstructure of Mg-Al Magnesium Alloys. Chinese Journal of Materials Research, 2017, 31(10): 737-742.

Download:  HTML  PDF(1485KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Al- and Ce-content on the microstructure and the evolution of second phases of Mg-alloys Mg-Al-Ce were investigated, while the relevant mechanism related with the formation of intermetallic phases and the grain refinement of alloys were analyzed thermodynamically. The results show that the addition of certain amount of Ce can effectively refine the grain size of Mg-Al alloys, while with the addition of 2.5% Al and 2% Ce, the grain size could be decreased from 1000 μm for pure Mg to 280 μm for the alloy Mg-Al-Ce. According to the data fitting of experimental results the optimum content (in mass fraction) of Al and Ce were 6.4%~7% and 1.6%~2% respectively,the grain size can be reduced to 160 μm. Results of experiment and thermodynamics calculation indicated that intermetallic compounds of Al-Ce have smaller formation enthalpy than that of Mg-Ce and Mg-Al, and the phase Al4Ce preferentially formed in the melts while the small intermetallic compounds Al4Ce adsorbed on the α-Mg grains leading the formation of lamellar eutectic, which can hindered the growth of α-Mg grain and so as to refined the grains.

Key words:  metallic materials      Ce      Al      Magnesium alloy      grain refinement mechanism     
Received:  10 October 2016     
ZTFLH:  TG146  
Fund: Supported by National Key R&D Program of China (No.2016YFB0301100);National Natural Science Foundation of China (No.51504052), Chongqing Science and Technology Training Program for Young Talent (No.cstc2014jcyjjq50002);Chongqing Science Foundation for Distinguished Young Scholars (No.cstc2014jcyjjq50002)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.480     OR     https://www.cjmr.org/EN/Y2017/V31/I10/737

Alloy Al Ce Mg Alloy Al Ce Mg
Mg-1Ce 0.42 Bal. Mg-0.3Al-2Ce 0.30 1.08 Bal.
Mg-2Ce 1.36 Bal. Mg-0.9Al-2Ce 0.95 1.56 Bal.
Mg-4Ce 2.27 Bal. Mg-1Al-2Ce 1.02 1.43 Bal.
Mg-2.5Al-1Ce 2.75 0.62 Bal. Mg-1.3Al-2Ce 1.28 1.15 Bal.
Mg-9.6Al-4Ce 9.63 1.57 Bal. Mg-2.5Al-2Ce 2.54 1.28 Bal.
Table 1  Chemical composition of Mg-Al-Ce alloys (mass fraction, %)
Fig.1  Microstructures of the Mg-Ce alloys (a) pure magnesium, (b) Mg-1Ce, (c) Mg-2Ce, (d) Mg-4Ce
Fig.2  Microstructures of the Mg-xAl-2Ce alloys with different Al addition (a) Mg-2Ce, (b) Mg-0.3Al-2Ce, (c) Mg-0.9Al-2Ce, (d) Mg-1Al-2Ce, (e) Mg-1.3Al-2Ce, (f) Mg-2.5Al-2Ce
Fig.3  Effect of Al and Ce on grain size of as-cast Mg-Al-Ce alloy
Fig.4  Microstructures of the Mg-Ce alloys (a) Mg-4Ce, (b) Mg-2.5Al-Ce, (c) Mg-2.5Al-2Ce, (d) Mg-9.6Al-4Ce
Fig.5  Grain sizes of the Mg-Al-Ce alloys (μm)
Element nws13 ? V23 μ
Mg 1.17 3.45 5.8 0.10
Al 1.39 4.20 4.6 0.10
Ce 1.09 3.05 8.0 0.07
Table 2  Perference of Mg, Al and Ce
Fig.6  Formation enthalpies of Mg-Al, Mg-Ce and Al-Ce
Fig.7  XRD analysis of Mg-xAl-2Ce alloys (a) Mg-2Ce, (b) Mg-0.3Al-2Ce, (c) Mg-0.9Al-2Ce, (d) Mg-1.3Al-2Ce and (e) Mg-2.5Al-2Ce
Fig.8  SEM images of Mg-xAl-xCe alloys: (a) Mg-1Ce, (b) Mg-0.6Al-1Ce, (c) Mg-1Al-2Ce
[1] Do JeonghyeonKim, Byeongho; Park, Yongho; Park, Ikmin; Lee, Sunghak. Effects of ca and Ce addition on tensile and fracture properties in squeeze cast AT42(Mg-4Al-2Sn) magnesium alloys[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43(8): 2955
[2] Tong Guodong, Liu Haifeng, Liu Yaohui.Effect of rare earth additions on microstructure and mechanical properties of AZ91 magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(2): 336
[3] Y. C. Lee, A. K. Dahle, D. H. Stjohn.The role of solute in grain refinement of magnesium[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2000, 31(11): 2895
[4] Huang Z H, Guo X F, Zhang Z M.Effects of Ce on mechanical properties and damping capacity of AZ91D magnesium alloy[J].Rare Metal Materials and Engineering, 2005, 34(3): 375(黄正华, 郭学锋, 张忠明. Ce对AZ91D镁合金力学性能与阻尼性能的影响[J]. 稀有金属材料与工程, 2005, (03): 375)
[5] Yang Q S, Jiang B, Li X, et al.Microstructure and mechanical behavior of the Mg-Mn-Ce magnesium alloy sheets[J]]. Journal of Magnesium and Alloys, 2014, (2): 8
[6] Cai S L, Tan Y X.Study of the microstructure and mechanical properties of AZ31-xXe magnesium alloy[J]. Heat Treatment Technology and Equipment, 2008, 29(4): 27(蔡素玲, 谭彦显. AZ31-xCe镁合金组织和力学性能的研究[J]. 热处理技术与装备, 2008, (04): 27)
[7] Pan F S, Peng J X, Yang M B.The effect of Ce addi tion on As -cast microstructures of AZ31 magnesium alloy[J]. Journal of Chongqing University, 2009, 32(4): 363(潘复生, 彭家兴, 杨明波. 铈对AZ31镁合金铸态组织的影响[J]. 重庆大学学报, 2009, (4): 363)
[8] R. Miedema, P. F. De Chatel, F. R. De Boer. Cohesion in alloys- fundamentals of a semi-empirical model[J]. Physica B+C, 1980, 100(1): 1
[9] A. R. Miedema, F. R. De Boer, R. Boom. Model predictions for the enthalpy of formation of transition metal alloys[J]. Calphad, 1977, 1(4): 341
[10] A. R. Miedema, F. R. De Boer, R. Boom. Predicting heat effects in alloys[J]. Physica B+C, 1981, 103(1): 67
[11] Ding X Y, Fan P, Han Q Y.Models of activity and activity interaction paramerter in ternary metallic melt[J]. Acta Metallurgica Sinica, 1994, 30(2): 50(丁学勇, 范鹏, 韩其勇. 三元系金属熔体中的活度和活度相互作用系数模型[J]. 金属学报, 1994, 30(2): 50)
[12] Yu S W, Wang W, Xu H, et al.Equilibrium phases and phase transformation of Al- Mg- Sc alloy through thermodynamic calculation[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(3): 505(余胜文, 王为, 徐赫等. Al-Mg-Sc合金中热力学平衡相的计算[J]. 中国有色金属学报, 2006, (03): 505)
[13] Huang B Y, Li C G, Shi L K, et al.Fourth volumes of non-ferrous metal materials and Application Engineering (The first volume) [M]. China ceremony of material engineering. Beijing: Chemical Industry Press, 2006(黄伯云, 李成功, 石力开等. (第四卷)有色金属材料工程(上)[M]. 中国材料工程大典. 北京: 化学工业出版社, 2006)
[14] Chen F R, Li S H, Guo F, et al.Effect of Ce on Microstructure and Mechanical Property of AZ91D Magnesium Alloy[J]. Foundry Technology, 2009, 30(2): 203(陈芙蓉, 李仕慧, 郭锋等. 铈对AZ91D镁合金组织和力学性能的影响. 铸造技术, 2009, 30(2): 203)
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[4] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[5] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[6] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[7] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[8] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[9] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[10] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[11] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[12] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[13] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[14] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[15] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
No Suggested Reading articles found!