Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (8): 591-596    DOI: 10.11901/1005.3093.2016.730
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Properties of Fatty Acid/SiO2 Composite Phase Change Materials
Lin LI1, Dongxu LI1,2(), Shupeng ZHANG1, Liguo WANG1
1 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
2 Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 211189, China
Cite this article: 

Lin LI, Dongxu LI, Shupeng ZHANG, Liguo WANG. Preparation and Properties of Fatty Acid/SiO2 Composite Phase Change Materials. Chinese Journal of Materials Research, 2017, 31(8): 591-596.

Download:  HTML  PDF(1327KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With capric acid (CA), lauric acid (LA), palmitic acid (PA), and myristic acid (MA) as raw materials, four kinds of ternary eutectic mixtures were prepared in consideration of the theoretical thermal property of the formed mixtures with the mass ratio of the three selected raw materials. Then LA-MA-PA/SiO2 composite phase change materials were prepared by sol-gel method and their structure and performance were characterized. The results show that LA-MA-PA was uniformly filled into the three-dimensional network of SiO2 and there was no chemical reaction between LA-MA-PA and SiO2. LA-MA-PA/SiO2 presented as smooth spherical particles with 3 μm in diameter, which exhibit smooth surface and good dispersibility. While the LA-MA-PA/SiO2 exhibited high-performance in energy storage with little leakage even after 100 thermal cycling. The phase change temperature and latent heat of the LA-MA-PA/SiO2 were determined to be 29.6℃ and 91.1 J/g.

Key words:  inorganic non-metallic materials      eutectic fatty acid      sol-gel method      silicon dioxide      composite phase change material     
Received:  14 December 2016     
ZTFLH:  TU522  
Fund: Supported by the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (No.2014BAL03B04)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.730     OR     https://www.cjmr.org/EN/Y2017/V31/I8/591

Fig.1  DSC curves of CA, LA, MA and PA
Samples Mass ratio Hm/Jg-1 Tm/℃
Hmcal Hmexp ΔHm Tmcal Tmexp ΔTm
CA-LA-MA 51.9:31.1:17.0 143.1 124.4 18.7 15.9 14.8 1.1
CA-LA-PA 56.6:33.9:9.5 144.8 130.8 14.0 17.7 13.5 4.2
CA-MA-PA 63.2:23.5:13.3 145.6 134.2 11.4 21.6 16.6 5.0
LA-MA-PA 49.5:31.8:18.7 158.7 155.3 3.4 29.8 30.2 -0.4
Table 1  Calculated values and tested results of eutectic fatty acid
Fig.2  Macrograph of LA-MA-PA/SiO2
Fig.3  Microgram (a and b) of LA-MA-PA/SiO2
Fig.4  FT-IR spectrum of samples
Fig.5  DSC curves of LA-MA-PA and composite phase change energy storage materials (a) LA-MA-PA, (b) LA-MA-PA/SiO2
No. Composite PCMs Phase change temperature/℃ Latent heat/(Jg-1) References
1 Paraffin/diatomite 33.0 89.5 [13]
2 Lauric acid/EP 44.1 93.4 [14]
3 Capric-lauric/SiO2 19.6 71.3 [15]
4
5
Capric-myristic acid/EP
Paraffin/silica fume
21.7
58.39
85.4
56.19
[16]
[17]
6 LA-MA-PA/SiO2 29.6 91.1 present study
Table 2  Thermal properties comparison of LA-MA-PA/SiO2 and composite phase change materials in the literature
Fig.6  TG curves of LA-MA-PA and composite phase change materials
[1] Jeong S G, Jeon J, Lee J H, et al.Optimal preparation of PCM/diatomite composites for enhancing thermal properties[J]. Int. J. Heat Mass Transfer., 2013, 62: 711
[2] Kim D, Jung J Y, Kim Y N, et al.Structure and thermal properties of octadecane/expanded graphite composites as shape-stabilized phase change materials[J]. Int. J. Heat Mass Transfer, 2016, 95: 735
[3] Sobolciak P, Mrlík M, AlMaadeed M A, et al. Calorimetric and dynamic mechanical behavior of phase change materials based on paraffin wax supported by expanded graphite[J]. Thermochim. Acta, 2015, 617: 111
[4] Tian H Q, Wang W L, Ding J, et al.Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials[J]. Sol. Energy Mater. Sol. Cells, 2016, 149: 187
[5] Schmit H, Rathgeber C, Hennemann P, et al.Three-step method to determine the eutectic composition of binary and ternary mixtures[J]. J. Therm. Anal. Calorim., 2014, 117: 595
[6] Zhang Y P, Hu H P, Kong X D.Phase Change Energy Saving: Theory and Application [M]. Hefei: University of Science and Technology of China Press, 1996: 8(张寅平, 胡汉平, 孔祥东. 相变贮能-理论和应用 [M]. 合肥: 中国科学技术大学出版社, 1996: 8)
[7] Wei T, Zheng B C, Liu J, et al.Structures and thermal properties of fatty acid/expanded perlite composites as form-stable phase change materials[J]. Energy Build., 2014, 68: 587
[8] Guo Q, Wang T.Preparation and characterization of sodium sulfate/silica composite as a shape-stabilized phase change material by sol-gel method[J]. Chin. J. Chem. Eng., 2014, 22: 360
[9] Zhou X F, Xiao H N, Feng J, et al.Preparation and thermal properties of paraffin/porous silica ceramic composite[J]. Compos. Sci. Technol., 2009, 69: 1246
[10] Shang J L, Zhang H, Xiong L, et al.Preparation and texture of phase change materials of fatty acid/SiO2 composite[J]. Chin. J. Mater. Res., 2015, 29: 757(尚建丽, 张浩, 熊磊等. 脂肪酸/SiO2复合相变材料的制备及其对织构的影响因素[J]. 材料研究学报, 2015, 29: 757)
[11] Zhang Y P, Su Y H, Ge X S.Prediction of the melting temperature and the fusion heat of (Quasi-) eutectic PCM[J]. J. China Univ. Sci. Technol., 1995, 25: 474(张寅平, 苏跃红, 葛新石. (准)共晶系相变材料融点及融解热的理论预测[J]. 中国科技技术大学学报, 1995, 25: 474)
[12] Liu Y, Zhang Y, Li D X.Preparation of hydrophobic silica aerogels by ambitient pressure drying method[J]. J. Funct. Mater., 2015, 46: 5132(刘洋, 张毅, 李东旭. 常压干燥制备疏水性SiO2气凝胶[J]. 功能材料, 2015, 46: 5132)
[13] Sun Z M, Zhang Y Z, Zheng S L, et al.Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials[J]. Thermochim. Acta, 2013, 558: 16
[14] Sar? A, Karaipekli A, Alkan C.Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material[J]. Chem. Eng. J., 2009, 155: 899
[15] Meng D, Wang L J.Preparation and thermal properties of fatty acid/inorganic nano-particle form-stable phase change material[J]. J. Build. Mater., 2013, 16: 91(孟多, 王立久. 脂肪酸/无机纳米颗粒基定形相变材料的制备与热性能[J]. 建筑材料学报, 2013, 16: 91)
[16] Karaipekli A, Sar? A.Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage[J]. Renew. Energy, 2008, 33: 2599
[17] Jeong S G, Jeon J, Cha J, et al.Preparation and evaluation of thermal enhanced silica fume by incorporating organic PCM, for application to concrete[J]. Energy Build., 2013, 62: 190
[18] Wang S P, Qin P, Fang X M, et al.A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications[J]. Sol. Energy, 2014, 99: 283
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!