Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (8): 597-602    DOI: 10.11901/1005.3093.2016.549
Orginal Article Current Issue | Archive | Adv Search |
Mechanical Behavior and Failure Mechanism of Phosphoric Acid Modified Para-Aramid Fiber
Zhaoqing LU(), Zhiping SU, Meiyun ZHANG, Yang HAO
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi Province, China, 710021
Cite this article: 

Zhaoqing LU, Zhiping SU, Meiyun ZHANG, Yang HAO. Mechanical Behavior and Failure Mechanism of Phosphoric Acid Modified Para-Aramid Fiber. Chinese Journal of Materials Research, 2017, 31(8): 597-602.

Download:  HTML  PDF(2324KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Para-aramid fiber was modified with phosphoric acid (PA) and then was characterized by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction(XRD). The mechanical behavior of the modified fiber (PPTA) was evaluated via measurement of the tensile strength and force-displacement curve of monofilament. The results show that the maximal fracture force of the modified fibers shifted to lower displacement region in force-displacement curves and the tensile strength of the monofilament decreased due to the damage of the skin region of PPTA fiber induced by PA-modification. Some aramid groups can be hydrolyzed during PA-modification process, thus decreasing the monofilament tensile strength of the modified PPTA fibers. In addition, the crystallinity of the modified fibers was improved because the original para-crystalline skin region was peeled off from the surface of PPTA fiber by PA-modification, hence resulting in the decrease of toughness of PA-modified fiber. The monofilament tensile strength of PPTA fiber decreased remarkably once it was modified with PA with concentration of higher than 40%(mass fraction), which can be attributed to the decrease of crystallinity.

Key words:  organic polymer materials      para-aramid fiber      phosphoric acid modification      mechanical behavior      failure mechanism     
Received:  20 September 2016     
ZTFLH:  TQ342  
Fund: Supported by Shaanxi Province As a Whole the Innovation Project of Science and Technology Plan Projects (No.2016KTCQ01-87), State Key Laboratory of Pulp and Paper Engineering (No.201333), and Key Laboratory Project Funded by Education Department of Shaanxi Provincial Government (No.12JS018)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.549     OR     https://www.cjmr.org/EN/Y2017/V31/I8/597

Fig.1  Load-displacement curves of PPTA fiber under tensile load
Fig.2  Effect of PA-modification on the monofilament tensile strength of PPTA fiber
Fig.3  Surface morphology of virgin and PA-modified PPTA fibers (a-0, b-10%, c-20%, d-30%, c-40% PA)
Fig.4  Schematic representation of a skin-core structure and fracture model of PPTA fiber
Fig.5  FT-IR spectra of virgin and PA-modified PPTA fibers (a-0, b-10%, c-20%, d-30%, e-40% PA)
Fig.6  Scheme of electrophilic substitution reaction(a) and hydrolysis reaction process(b) on PA-modified PPTA fibers surface
Fig.7  XRD patterns of virgin and PA-modified PPTA fibers
PA concentration/% CI/%
0 78.29
10 78.21
20 77.29
30 81.46
40 72.7
Table 1  Effect of PA-modification on the degree of crystallinity (CI) of PPTA fiber
Fig.8  Schematic representation of a deformation model of PPTA fiber
[1] Wang C X, Du M, Lv J C, et al.Surface modification of aramid fiber by plasma induced vapor phase graft polymerization of acrylic acid . I . Influence of plasma conditions[J]. Appl. Surf. Sci., 2015,349: 333
[2] Lu Z, Jiang M, Zhang M, et al.Characteristics of PPTA chipped fiber/fibrid and their properties for sheet making[J]. J. Eng. Fiber Fabr., 2016, 11(1): 1
[3] Jang J, Yang H.The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites[J]. J. Mater. Sci., 2000, 35(9): 229
[4] Jiang D, Liu L, Long J, et al.Reinforced unsaturated polyester composites by chemically grafting amino-POSS onto carbon fibers with active double spiral structural spiralphosphodicholor[J]. Compos. Sci. Technol., 2014, 100: 158
[5] Jia C, Chen P, Liu W, et al.Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure[J]. Appl. Surf. Sci., 2011, 257(9): 4165
[6] Liu L, Huang Y D, Zhang Z Q, et al.Ultrasonic treatment of aramid fiber surface and its effect on the interface of aramid/epoxy composites[J]. Appl. Surf. Sci., 2008, 254(9): 259
[7] Xing L, Liu L, Huang Y, et al.Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation[J]. Compos. Eng., 2015, 69B: 50
[8] Chen J, Zhu Y, Ni Q, et al.Surface modification and characterization of aramid fibers with hybrid coating[J]. Appl. Surf. Sci., 2014, 321: 103
[9] Gao J, Dai Y, Wang X, Huang J, et al.Effects of different fluorination routes on aramid fiber surface structures and interlaminar shear strength of its composites[J]. Appl. Surf. Sci., 2013, 270: 627
[10] Li C, Zhen Q, Luo Z, et al.Effect of calcium chloride on the surface properties of Kevlar fiber[J]. J. Appl. Polym. Sci., 2015, 132(4): 1
[11] Li G, Zhang C, Wang Y, et al.Interface correlation and toughness matching of phosphoric acid functionalized Kevlar fiber and epoxy matrix for filament winding composites[J]. Compos. Sci. Technol., 2008, 68(15-16): 3208
[12] Li J, Xia Y C.Interfacial characteristics of an epoxy composite reinforced with phosohoric acid-functionalized kevlar fibers[J]. Mech. Compos. Mater., 2010, 46(2): 211
[13] Park S -J, Seo M-K, Ma T -J, et al.Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites[J]. J. Colloid Interf. Sci., 2002, 252(1): 249
[14] Liu T M, Zheng Y S, Hu J.Surface modification of aramid fibers with novel chemical approach[J].Polym. Bull., 2011, 66(2): 259
[15] Qiang D, Zhang M.Selective hydrolysis of cellulose for the preparation of microcrystalline cellulose by phosphotungstic acid[J]. Cellulose, 2016, 23(2):1199
[16] Hearle J W S. High-performance Fibres[M]. Cambridge England: Woodhead Publishing Ltd, 2001
[17] Mosquera M E G, Jamond M, Martinez-alonso A, et al. Thermal Transformations of Kevlar Aramid Fibers during Pyrolysis: Infrared and Thermal Analysis Studies[J]. Chem. Mater., 1994, 6(11): 1918
[18] Rebouillat S, Donnet J -B, Wang T K.Surface microstructure of a Kevlar aramid fibre studied by direct atomic force microscopy[J]. Polymer, 1997, 38(9): 2245
[19] Rao Y, Waddon A J, Farris R J.Structure-property relation in poly(p-phenylene terephthalamide) (PPTA) fibers[J]. Polymer, 2001, 42(13): 5937
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] DENG Hailong, LIU Bing, GUO Yang, KANG Heming, LI Mingkai, LI Yongping. Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism[J]. 材料研究学报, 2023, 37(1): 55-64.
[5] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
No Suggested Reading articles found!