Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (6): 434-438    DOI: 10.11901/1005.3093.2014.409
Current Issue | Archive | Adv Search |
Effect of Calcination Temperature on Photocatalytic Property of N-doped Titania Hollow Microspheres
Ruyi WANG,Wei AO,Miao CHEN,Jianing LIU,Gaowen ZHANG()
School of Materials Science and Engineering, Hubei University of Technology, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Wuhan 430068, China
Cite this article: 

Ruyi WANG,Wei AO,Miao CHEN,Jianing LIU,Gaowen ZHANG. Effect of Calcination Temperature on Photocatalytic Property of N-doped Titania Hollow Microspheres. Chinese Journal of Materials Research, 2015, 29(6): 434-438.

Download:  HTML  PDF(1753KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

N-doped titania hollow mesoporous microspheres (N-THS) with good spherical morphology were prepared via LBL self-assembly and calcination method by using triethylamine as nitrogen source. The structure and photocatalytic property of N-THS were investigated with XRD, XPS and UV-Vis DRS. Results show that parts of N inserted into the TiO2 lattice and replace parts of O, thereby change the chemical state of Ti and O in the lattice. After calcination in a temperature range 400-600℃, anatase TiO2 was obtained for the N-THS, while rutile TiO2 appears when calcination at temperatures up to 700℃. The particle size of TiO2 increases with the increasing calcination temperature. N-THS exhibit strong photoabsorption ability in the visible light region with a clearly red-shifted absorption spectral band. Correspondingly N-THS show good degradation efficiency for methyl orange solution, and along with the decreasing calcination temperature the visible light region absorption ability and the degradation efficiency of N-THS may be enhanced. The degradation efficiency of N-THS calcinated at 400℃ can reach 93.5% after 80 min light irradiation.

Key words:  inorganic non-metallic materials      TiO2 hollow microsphere      N-doped      visible-light photocatalysis      calcination temperature     
Received:  11 August 2014     
Fund: *Supported by National Natural Science Foundation of China No.11274103.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.409     OR     https://www.cjmr.org/EN/Y2015/V29/I6/434

Fig.1  SEM (a) and TEM (b) images of N-doped TiO2 hollow mesoporous microspheres
Fig.2  XPS spectra of pure and N-doped TiO2 hollow mesoporous microspheres, (a) XPS spectra, (b) Ti2p, (c) O1s, (d) N1s
Fig.3  XRD spectra of N-THS calcined at different temperatures
Fig.4  UV-vis DRS spectra of N-THS calcined with different temperature (a) and the effect of optical absorption coefficient (ahn)1/2 on the absorbing light energy (hn) (b)
Fig.5  Photocatalytic degradation UV-vis spectra of N-THS-400 varies with the reaction time (a) and photocatalytic properties of N- THS calcined at different temperatures on methyl orange (b)
Fig.6  Schematic to photocatalytic reaction mechanism of N-THS
1 X. B. Chen, M. S. Samuel,Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chemical Reviews, 107, 2891(2007)
2 H. Diker, C. Varlikli, K. Mizrak, A. Dana,Characterizations and photocatalytic activity comparisons of N-doped TiO2?depending on synthetic conditions and structural differences of amine sources, Energy, 36, 1243(2011)
3 D. Nassoko, Y. F. Li, H. Wang, J. L. Li, Y. Z. Li, Y. Yu,Nitrogen-doped TiO2 nanoparticles using EDTA as nitrogen source and soft template: Simple preparation, mesoporous structure, and photocatalytic activity under visible light, Journal of Alloys and Compounds, 54, 228(2012)
4 Y. Chen, X. Cao, B. Lin, B. Gao,Origin of the visible-light photoactivity of NH3-treated TiO2: Effect of nitrogen doping and oxygen vacancies, Applied Surface Science, 264, 845(2013)
5 Q. Wu, W. Li, D. Wang, S. Liu,Preparation and characterization of N-doped?visible-light-responsive mesoporous TiO2 hollow spheres, Applied Surface Science, 299, 35(2014)
6 J. N. Liu, G. W. Zhang, W. Ao, K. Yang, S. X. Peng, M. G. Christel,Hollow mesoporous titania microsphere with low shell thickness/diameter ratio and high photocatalysis, Applied Surface Science, 2589(20), 8083(2012)
7 G. W. Zhang, Y. Ye, F. D. Zhu, K. Yang,Fabrication of mono-dispersed hollow titania nanopheres with enhanced photocatalytic property, Rare Metal Materials and Engineering, 43(6), 87(2014)
8 A. L. Linsebigler, G. Lu, J. T. Yates,Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results, Chemical Reviews, 95(3), 735(1995)
9 S. H. Liu, H. R. Syu,One-step fabrication of N-doped mesoporous TiO2 nanoparticles by self-assembly for photocatalytic water splitting under visible light, Applied Energy, 100, 148(2012)
10 X. B. Chen, C. Burda,Photoelectron spectroscopic investigation of nitrogen doped titania nanoparticles, Journal of Physical Chemistry B, 108(40), 15446(2004)
11 LIU Guochong,DONG Hui, LIU Shaoyou, Citrie acid-catalyzed synthesis of N-doped mesoporous TiO2 and their photocatalytical properties, Chinese Journal of Materials Research, 24(6), 631(2010)
11 (刘国聪, 董 辉, 刘少友, N掺杂介孔TiO2柠檬酸催化合成及其光催化性能研究, 材料研究学报, 24(6), 631(2010))
12 H. Satoshi, M. Yuya, S. Hideki, A. Masahiko, S. Nick,Characteristics of microwaves on second generation nitrogen-doped TiO2 nanoparticles and their effect on photoassisted processes, Journal of Photochemistry and Photobiology A: Chemistry, 217, 191(2011)
13 C. N. Rusu, J. T. Yates,Defect sites on TiO2 (110) detection by O2 photodesorption, Langmuir, 13(16), 4311(1997)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!