Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (6): 429-433    DOI: 10.11901/1005.3093.2014.674
Current Issue | Archive | Adv Search |
Electronic-ionic Impedance Characteristics of (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ Mixed Conductor
Ke SHAN1,**(),Xingmin GUO2
1. Laboratory of New Materials for Power Sources, College of Science, Honghe University, Mengzi 661199, China
2. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing,Beijing 100083, China
Cite this article: 

Ke SHAN,Xingmin GUO. Electronic-ionic Impedance Characteristics of (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ Mixed Conductor. Chinese Journal of Materials Research, 2015, 29(6): 429-433.

Download:  HTML  PDF(1752KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A single phase A-site-deficient perovskite (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ (x=0.05, 0.07, 0.10) was synthesized at 1350 oC in air by sol-gel method. The effect of A-site deficiency in (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ on its phase structure, electrical and ionic conductivity and impedance was investigated. The partial oxygen ionic conductivity decreases with the increasing A-site deficiency, which may be attributed to the tendency for oxygen vacancy ordering. The n-type electronic conductivity in air increases with the increasing A-site deficiency, which may be attributed to the decrease of and due to the possible ionization reaction of ferric iron. The total electrical conductivity of (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ (x=0.05, 0.07, 0.10) varies from 0.11 Scm-1 to 0.26 Scm-1 at 800oC. Only one oblique line in high frequency range for each temperature is presented, demonstrating that the electronic conductivity should mainly contribute to the total electrical conductivity. The increase of A-site deficiency is unfavorable for ion conductivity due to a subsequently rising relaxation time.

Key words:  inorganic non-metallic materials, (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ      , electrical impedance, ionic impedance, relaxation     
Received:  13 November 2014     
Fund: *Supported by National Natural Science Foundation of China No. 51374017.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.674     OR     https://www.cjmr.org/EN/Y2015/V29/I6/429

Fig.1  X-ray diffraction patterns of (a) (Y0.08Sr0.92)0.95Ti0.6Fe0.4-O3-δ, (b) (Y0.08Sr0.92)0.93Ti0.6Fe0.4O3-δ and (c) (Y0.08Sr0.92)0.90-Ti0.6Fe0.4O3-δ sintered at 1350oC in air for 5 h and indexed with cubic indices
Fig.2  Relation diagram of the tolerance factor and A-site deficiency for (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ
Fig.3  SEM micrographs of surface for (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ (a) x=0.05 and (b) x=0.07
Fig.4  Complex-plane impedance plots of the total electrical conduction at different temperatures for: (a) (Y0.08Sr0.92)0.95Ti0.6Fe0.4O3-δ; (b) (Y0.08Sr0.92)0.90Ti0.6Fe0.4O3-δ
Fig.5  Temperature dependences of the total electrical conductivities of (Y0.08Sr0.92)1-xTi0.6Fe0.4O3-δ (x =0.05, 0.07, 0.10) in 400-900℃ in air
Fig.6  Complex-plane impedance plots of the ionic conduction for (Y0.08Sr0.92)0.90Ti0.6Fe0.4O3-δ (the inset shows the proposed equivalent circuit) (a) 650-800℃; (b) 800℃
Fig.7  Variation of impedance Z″as function of frequency at Y0.08Sr0.92Ti1-xFexO3-δ(a) x= 0.05, (b) x= 0.07 and (c) x=0.10
T fmax x x=0.05 x=0.07 x=0.10
650℃ 0.55Hz 0.118 Hz 0.066 Hz
700℃ 2.55 Hz 1.738 Hz 1.434 Hz
750℃ 5.49 Hz 11.91 Hz 11.91 Hz
800℃ 11.91 Hz 21.23 Hz 21.23 Hz
t ~13.4–290 ms ~7.5–1349 ms ~7.5–2413 ms
Table 1  
1 Gong M., Liu X., Termbly J.,Sulfur-tolerant anode materials for solid oxide fuel cell application, Journal of Power Sources, 168(2), 289(2007)
2 Blennow P., Hagen A., Hansen K. K.,Defect and electrical transport properties of Nb-doped SrTiO3, Solid State Ionics, 179(35), 2047(2008)
3 Canales-Vazquez J., Tao S. W., Irvine J. T. S.,Electrical properties in La2Sr4Ti6O19?δ: a potential anode for high temperature fuel cells, Solid State Ionics, 159(1), 159(2003)
4 Boukamp B. A.,The amazing perovskite anode, Nature Materials, 2(5), 294(2003)
5 Li X., Zhao H., Xu N.,Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells, International Journal of Hydrogen Energy, 34(15), 6407(2009)
6 Li X., Zhao H., Gao F.,La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells, Electrochemistry Communication, 10(10), 1567(2008)
7 Litzelman S. J.,Rothschild A.,Tuller . H. L , The electrical properties and stability of SrTi0.65Fe0.35O3-δ thin films for auto- motive oxygen sensor applications, Sensors and Actuators B, 108(1/2), 231(2005)
8 Kharton V. V.,Kovalevsky A. V., Viskup A. P., Transport properties and thermal expansion of Sr0.97Ti1-xFexO3-δ (x=0.2-0.8), Journal of Solid State Chemistry, 156(2), 437(2001)
9 Hui S. Q., Petric A.,Electrical conductivity of yttrium-doped SrTiO3: influence of transition metal additives, Materials Research Bulletin, 37(7), 1215(2002)
10 Yoon J. S., Yoon M. Y., Kwak C.,Y0.08Sr0.92FexTi1-xO3-δperovskite for solid oxide fuel cell anodes, Materials Science and Engineering B, 177(2), 151(2011)
11 Fagg D. P., Kharton V. V., Frade J. R.,Stability and mixed ionic–electronic conductivity of (Sr, La)(Ti, Fe)O3-δ perovskites, Solid State Ionics, 156(1/2), 45(2003)
12 Hui S., Petric A.,Evaluation of yttrium- doped SrTiO3 as an anode for solid oxide fuel cells, Journal of European Ceramic Society, 22(9/10), 1673(2002)
13 Fu Q. X., Mi S. B., Wessel E.,Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3, Journal of European Ceramic Society, 28(4), 811(2008)
14 Kurokawa H., Yang L., Jacobson C. P.,Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells, Journal of Power Sources, 164(2), 510(2007)
15 Li X., Zhao H., Gao F.,Synthesis and properties of Y-doped SrTiO3 as anode material for SOFC, Journal of Power Sources, 166(1), 47(2007)
16 SHAN Ke,GUO Xingmin, Synthesis and electrical conductivity of Y0.06Sr0.94Ti1-xFexO3-δ as a mixed conductor, Materials Science and Engineering of Powder Metallurgy, 18(6), 857(2013)
16 (单科, 郭兴敏, 溶胶-凝胶法制备Y0.06Sr0.94Ti1-xFexO3-δ混合导体材料的电性能, 粉末冶金材料科学与工程, 18(6), 857(2013))
17 Shan K., Guo X. M.,Synthesis and electrical properties of mixed-conducting YxSr1-xTi0.7Fe0.3O3-δ, Materials Letters, 121, 251(2014)
18 Zhao H. L., Cheng Y. F., Xu N. S.,Oxygen permeability of A-site nonstoichiometric BaxCo0.7Fe0.2Nb0.1O3-δ perovskite oxides, Solid State Ionics, 181(5-7), 354(2010)
19 Liu M. F., Zhao L., Dong D. H.,High sintering ability and electrical conductivity of Zn doped La(Ca)CrO3 based interconnect ceramics for SOFCs, Journal of Power Sources, 177(2), 451(2008)
No related articles found!
No Suggested Reading articles found!