Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (1): 10-16    DOI: 10.11901/1005.3093.2014.140
Current Issue | Archive | Adv Search |
On-line Modification of Continuous Fibers by Atmospheric Air Plasma
Caixia JIA1,Ping CHEN1,2,**(),Qian WANG2,Jing WANG1,Rong REN1
1. Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China
2. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education) & School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

Caixia JIA,Ping CHEN,Qian WANG,Jing WANG,Rong REN. On-line Modification of Continuous Fibers by Atmospheric Air Plasma. Chinese Journal of Materials Research, 2015, 29(1): 10-16.

Download:  HTML  PDF(1917KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three high-performance continuous fibers PBO, Armos and Twaron were on-line modified by atmospheric air dielectric barrier discharge (DBD) plasma. Then the modified fibers were characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), measurements of single fiber tensile strength (SFTS) and interlaminar shear strength (ILSS) in terms of their surface chemical composition, morphology, roughness and tensile strength, as well as interfacial adhesion properties of fiber reinforced composites respectively. Results showed that the oxygen and nitrogen content, and the roughness of fiber surface after DBD plasma modification with PBO, Armos and Twaron were all increased, and the ILSS of their composites were enhanced by 18.6%, 10.2% and 24.8%, respectively. However, it is important to note that there were significant differences in the increment of oxygen and nitrogen content as well as the etching effect of the surface for the three modified fibers, which might be related to the difference of their molecular structures and thermal performances. Apparently, the atmospheric air dielectric barrier discharge (DBD) plasma treatment is proved to be an effective means to improve the surface performance of the fibers while no harm to their SFTS and thereby the ILSS of the composite composed of a resin with the three fibers may obviously be enhanced.

Key words:  organic polymer materials      on-line modification      atmospheric air plasma      surface      interface     
Received:  26 March 2014     
Fund: *Supported by National Defense 12th 5-year Basic Scientific Research Program of China No. A352×××××××, National Natural Science Foundation of China No.51303106, General Scientific Research Program of Liaoning Education Department No.L2014056, and Doctor Start-up Funds of Shenyang Aerospace University No.13YB05.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.140     OR     https://www.cjmr.org/EN/Y2015/V29/I1/10

Fiber sample Chemical structure Diameter /m Density /kg/m3 Long-term working temperature /K Thermal decomposition temperature /K
PBO 1.2×10-5 1.56×103 573 923-973
Armos 1.5×10-5 1.45×103 473 823-873
Twaron 1.2×10-5 1.44×103 453 753-833
Table 1  Structure and properties of PBO, Armos and Twaron fibers
Fig.1  Schematic representation of DBD plasma treatment and composite preparation
Electrode diameter /m Discharge gap /m Dielectric thickness /m Output Power /W Time /s Pressure /Pa Output frequency /Hz
4.7×10-2 0.3×10-2 0.1×10-2 150 10 1.013×105 2.7×104
Table 2  Parameters of DBD plasma treatment
Fig.2  XPS survey spectra of PBO, Armos and Twaron fibers before and after DBD plasma treatment
Fig.3  Contrast of O, N increasing rates of PBO, Armos and Twaron fibers after DBD plasma treatment
Fig.4  SEM images of PBO, Armos and Twaron fibers after DBD plasma treatment
Fig.5  ILSS of fiber/PPESK composites and contrast of ILSS increasing rate
Fiber sample Before DBD treatment After DBD treatment
Rq/m Ra/m Rq/m Ra/m
PBO 1.88×10-7 2.08×10-7 2.12×10-7 2.32×10-7
Armos 2.18×10-7 2.06×10-7 2.60×10-7 2.44×10-7
Twaron 2.01×10-7 1.89×10-7 2.44×10-7 2.26×10-7
Table 3  Surface roughness of fibers before and after the DBD plasma treatment
Fig.6  SFTS of fiber/PPESK composites before and after DBD plasma treatment
1 T. Kitagawa, K. Yabuki, R.J. Young,An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres. Part 1. Raman band shifts and broadening in tension and compression, Polymer, 42, 2101(2001)
2 G. M. Wu,Oxygen plasma treatment of high performance fibers for composites, Materials Chemistry and Physics, 85, 81(2004)
3 HUANG Yudong,PBO super fiber and its surface treatment, Hi-Tech Fiber & Application, 26(1), 11(2001)
3 (黄玉东,PBO超级纤维研究进展及其表面处理, 高科技纤维与应用, 26(1), 11(2001))
4 K. E. Perepelkin, I. V. Andreeva, E. A. Pakshver, I. Y. Morgoeva,Thermal Characteristic of para-aramid fibers, Fibre Chemistry, 35, 265(2003)
5 Y. H. Zhang, Y. D. Huang, L. Liu, L. N. Wu,Surface modification of aramid fibers with γ-Ray radiation for improving interfacial bonding strength with epoxy resin, Journal of Applied Polymer Science, 106, 2251(2007)
6 R. J. Day, K. D. Hewson, P. A. Lovell,Surface modification and its effect on the interfacial properties of model aramid-fibre/epoxy composites, Composites Science and Technology, 62, 153(2002)
7 K. Q. Luo, J. H. Jin, S. L. Yang, G. Li, J. M. Jiang,Improvement of surface wetting properties of poly(p-phenylene benzoxazole) by incorporation of ionic groups, Materials Science and Engineering B, 132, 59(2006)
8 XIE Linkun,YE Xi, WU Zhangkang, DENG Qiping, CHAI Xijuan, LIANG Yanjun, Study on surface modification of low density polyethylene (LDPE) film by low temperature plasma treatment, Chinese Journal of Materials Research, 24(6), 661(2010)
8 (解林坤, 叶 喜, 吴章康, 邓启平, 柴希娟, 梁艳君, 低温等离子体对低密度聚乙烯(LDPE)薄膜表面改性的研究, 材料研究学报, 24(6), 661(2010))
9 SU Fenghua,ZHANG Zhaozhu, WANG Kun, JIANG Wei, LIU Weimin, Tribological properties of carbon fabric composite treated with plasma, Chinese Journal of Materials Research, 19(4), 437(2005)
9 (苏峰华, 张招柱, 王 坤, 姜 葳, 刘维民, 等离子处理碳纤维织物复合材料的摩擦学性能, 材料研究学报, 19(4), 437(2005))
10 N. De Geyter, R. Morent, C. Leys, Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure, Surface and Coatings Technology, 201, 2460(2006)
11 S. J. Park, H. J. Sohn, S. K. Hong, G. S. Shin,Influence of atmospheric fluorine plasma treatment on thermal and dielectric properties of polyimide film, Journal of Colloid and Interface Science, 332, 246(2009)
12 XU Xincan,ZHANG Shunhua, Study on the strength and dyeing properties of UHMWPE fibers by ADBD plasma treatment, Acta Polymerica Sinica, 12, 1520(2013)
12 (徐鑫灿, 张顺花, ADBD等离子体处理UHMWPE纤维的强度及染色性能研究, 高分子学报, 12, 1520(2013))
13 N. Dumitrascu, C. Borcia,Adhesion properties of polyamide-6 fibres treated by dielectric barrier discharge, Surface and Coatings Technology, 201, 1117(2006)
14 G. Borcia, C. A. Anderson, N. M. D. Brown,Using a nitrogen dielectric barrier discharge for surface treatment, Plasma Sources Science and Technology, 14, 259(2005)
15 K. L. Wang, W. C. Wang, D. Z. Yang, Y. Huo, D. Z.Wang,Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma, Applied Surface Science, 256, 6859(2010)
16 M. Xi, Y. L. Li, S. Y. Shang, D. H. Li, Y. X. Yin, X. Y. Dai, Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing, Surface and Coatings Technology, 202, 6029(2008)
17 CHEN Ping,LU Chun, WANG Jing, ZHANG Chengshuang, YU Qi, Interfacial studies of continuous fibers reinforced poly(aromatic ethers) containing phthalazinone moieties, Acta Polymerica Sinica, 1, 38(2011)
17 (陈 平, 陆 春, 王 静, 张承双, 于 祺, 连续纤维增强含二氮杂萘酮联苯结构聚芳醚砜酮树脂基复合材料的界面, 高分子学报, 1, 38(2011))
18 Q. Wang, P. Chen, C. X. JIa, M. X. Chen, B. Li,Improvement of PBO fiber surface and PBO/PPESK composite interface properties with air DBD plasma treatment, Surface and Interface Analysis, 44, 548(2012)
19 C. X. Jia, P. Chen, Q. Wang, B. Li, M. X. Chen,Surface wettability of atmospheric dielectric barrier discharge processed Armos fibers, Applied Surface Science, 258, 388(2011)
20 C. X. Jia, P. Chen, W. Liu, B. Li, Q. Wang, Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure, Applied Surface Science, 257, 4165(2011)
21 HU Fuzeng, Surface and Interface of Materials (Shanghai, East China University of Science and Technology Press, 2008) p.102
21 (102)
22 PEI Jinchang,Physicochemical properties of Plasma and its application(III), Printing and Dyeing, 13, 41(2005)
22 (裴晋昌, 低温等离子体物理化学基础及其应用(三), 印染, 13, 41(2005))
23 HU Jianhang,FANG Zhi, ZHANG Cheng, ZHAO Longzhang, Research progress in surface modification of materials using dielectric barrirer discharge, Materials Review, 21(9), 71(2007)
23 (胡建杭, 方 志, 章 程, 赵龙章, 介质阻挡放电材料表面改性研究进展, 材料导报, 21(9), 71(2007))
24 D. Liu, P. Chen, J.J. Mu, Q. Yu, C. Lu,Improvement and mechanism of interfacial adhesion in PBO fiber/bismaleimide composite by oxygen plasma treatment, Applied Surface Science, 257, 6935(2011)
25 W. G. Pitt, J. E. Lakenan, A. B. Strong,The influence of plasma gas species on the adhesion of thermoplastic to organic fibers, Journal of Applied Polymer Science, 48, 845(2003)
26 A. T. DiBenedetto, S. J. Huang, D. Birch, J. Gomez, W. C. Lee,Reactive coupling of fibers to engineering thermoplastics, Composite Structures, 27, 73(1994)
27 U. Kogelschatz,Dielectric-barrier discharges: their history, discharge physics, industrial applications, Plasma Chemistry and Plasma Processing, 23, 1(2003)
28 K. K. Wong, X. M. Tao, C. W. M. Yuen, K. W. Yeung,Low temperature plasma treatment of linen, Textile Research Journal, 69, 846(1999)
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[6] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[7] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[8] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[9] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[10] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[11] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[12] CHENG Hongjie, LIU Huangjuan, JIANG Ting, WANG Fajun, LI Wen. Preparation and Properties of Near-infrared Reflective Superhydrophobic Yellow Coating[J]. 材料研究学报, 2022, 36(9): 687-698.
[13] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[14] YANG Xiaohui, LI Kezhi, BAI Longteng, GUO Yawei. Ablation Properties and Mechanisms of C/ZrC-SiC Composites with Pyrolytic Carbon Interlayer of Different Thickness[J]. 材料研究学报, 2022, 36(7): 489-499.
[15] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
No Suggested Reading articles found!