Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (5): 353-361    DOI: 10.11901/1005.3093.2024.330
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites
HU Yong(), LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao
School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
Cite this article: 

HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites. Chinese Journal of Materials Research, 2025, 39(5): 353-361.

Download:  HTML  PDF(13004KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Novel composites of FeCoCrNiMn particle reinforced 6061 Al-alloy matrix (FeCoCrNiMn/6061 Al-alloy)were prepared by vacuum hot-pressing sintering technique. The microstructure of the composites was studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The mechanical properties of the composites were measured by universal testing machine. The results indicate that the interface between FeCoCrNiMn particles and the 6061 Al-alloy matrix is well bonded, with a diffusion layer of approximately 0.5 μm at the interface. With the increase of the volume fraction of FeCoCrNiMn particles, the Brinell hardness, yield strength and tensile strength of the composites increase gradually, while the elongation at break decreases gradually. When the volume fraction of FeCoCrNiMn particles is 20%, the yield strength and tensile strength reach 137.53 MPa and 186.00 MPa, respectively, which are 71.12% and 24.41% higher than 6061 Al-alloy. The strengthening mechanisms of FeCoCrNiMn/6061 Al-alloy matrix composites may mainly be thermal mismatch strengthening, fine-grain strengthening and load transfer strengthening, among which the thermal mismatch strengthening contributes the most.

Key words:  composite      FeCoCrNiMn particles      aluminum matrix composites      hot press sintering      microstructure      mechanical property     
Received:  27 July 2024     
ZTFLH:  TB331  
Fund: National Natural Science Foundation of China(51865011);Natural Science Foundation of Jiangxi Province(20224BAB214048)
Corresponding Authors:  HU Yong, Tel: 13576012078, E-mail: huyong@ecjtu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.330     OR     https://www.cjmr.org/EN/Y2025/V39/I5/353

Fig.1  Powder morphology of 6061 (a), FeCoCrNiMn (b) and FeCoCrNiMn + 6061 (c)
Volume fraction of FeCoCrNiMn particles0%4%8%12%16%20%
ρt / g·cm-32.722.9353.153.3663.5813.796
ρa / g·cm-32.6772.8813.0763.2843.4713.669
Table 1  Actual and theoretical densities of FeCoCrNiMn/6061 aluminum matrix composites
Fig.2  Relative density of FeCoCrNiMn /6061 aluminum matrix composites
Fig.3  Microstructures of FeCoCrNiMn /6061 aluminum matrix composites
(a) 0%, (b) 4%, (c) 8%, (d) 12%, (e) 16%, (f) 20%
Fig.4  Grain size distribution of FeCoCrNiMn/6061 aluminum matrix composites
(a) 0%, (b) 4%, (c) 8%, (d) 12%, (e) 16%, (f) 20%
Fig.5  XRD patterns of 6061 aluminum alloy and FeCoCrNiMn/6061 aluminum matrix composites with 12% 6061 aluminum alloy
Fig.6  EDS element analysis of FeCoCrNiMn/6061 Al matrix composites
Fig.7  EDS line scanning analysis of the interface layer of FeCoCrNiMn/6061 Al matrix composites
Fig.8  Brinell hardness of FeCoCrNiMn/6061 aluminum matrix composites
Fig.9  Tensile stress-strain curves of FeCoCrNiMn/6061 aluminum matrix composites
Fig.10  Tensile fracture morphologies of FeCoCrNiMn/6061 aluminum matrix composites
(a) 0%, (b) 4%, (c) 8%, (d) 12%, (e) 16% and (f) 20%
Fig.11  Contribution of various strengthening mechanisms to the yield strength of FeCoCrNiMn/6061 aluminum matrix composites
Fig.12  Prediction curve and experimental value of yield strength of FeCoCrNiMn/6061 aluminum matrix composites
1 Garg P, Jamwal A, Kumar D, et al. Advance research progresses in aluminium matrix composites: manufacturing & applications [J]. J. Mater. Res. Technol., 2019, 8(5): 4924
2 Suthar J, Patel K M. Processing issues, machining, and applications of aluminum metal matrix composites [J]. Mater. Manuf. Process., 2017, 33(5): 499
3 Zhao Y F, Tian Z Y, Chen Z M, et al. Research progress in mechanical properties of AlN reinforced aluminum matrix composites [J]. J. Mater. Eng., 2023, 51(12): 24
doi: 10.11868/j.issn.1001-4381.2022.001005
赵永峰, 田泽源, 陈宗民 等. AlN增强铝基复合材料力学性能研究进展 [J]. 材料工程, 2023, 51(12): 24
doi: 10.11868/j.issn.1001-4381.2022.001005
4 Zhang L, Yang L, Leng J, et al. Alloying behavior and properties of Al-based composites reinforced with Al85Fe15 metallic glass particles fabricated by mechanical alloying and hot pressing consolidation [J]. JOM, 2017, 69(4): 748
5 Hu J, Wu G, Zhang Q, et al. Damping capacity of the Al matrix composite reinforced with SiC particle and TiNi fiber [J]. Sci. Eng. Compos. Mater., 2016, 23(2): 179
6 Xiang Z B, Nie J H, Wei S H, et al. Effects of particle-matrix matching on strengthening mechanism of particle reinforced Al matrix composites [J]. Chin. J. Mater. Res., 2015, 29(10): 744
doi: 10.11901/1005.3093.2014.591
向兆兵, 聂俊辉, 魏少华 等. 增强颗粒与基体适配性对颗粒增强铝基复合材料强化机理的影响 [J]. 材料研究学报, 2015, 29(10): 744
doi: 10.11901/1005.3093.2014.591
7 Ye T, Xu Y, Ren J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite [J]. Mater. Sci. Eng. A, 2019, 753: 146
8 Wang H M, Su W X, Liu J Q, et al. Microstructure and properties of FeCoNiCrMn and Al2O3 hybrid particle-reinforced aluminum matrix composites fabricated by microwave sintering [J]. J. Mater. Res. Technol., 2023, 24: 8618
9 Farid W, Bah T A, Kong C, et al. A novel way to fabricate high elastic modulus and high strength of TiC reinforced aluminum matrix composite [J]. Mater. Manuf. Process., 2023, 38(14): 1785
10 Liu R F, Wang W X, Zhao W. Microstructure and mechanical properties of micro/nano B4C particle reinforced 6061Al matrix composites [J]. Acta Mater. Compo. Sin., 2021, 38(10): 3394
刘瑞峰, 王文先, 赵 威. 微/纳B4C增强6061Al复合材料微观结构及力学性能 [J]. 复合材料学报, 2021, 38(10): 3394
11 Zhuang W, Yang H, Yang W, et al. Microstructure, tensile properties, and wear resistance of in situ TiB2/6061 composites prepared by high energy ball milling and stir casting [J]. J. Mater. Eng. Perform., 2021, 30(10): 7730
12 Li Q, Bao X, Zhao S, et al. The influence of AlFeNiCrCoTi high-entropy alloy on microstructure, mechanical properties and tribological behaviors of aluminum matrix composites [J]. Int. J. Metalcast., 2020, 15(1): 281
13 Li J, Nie J, Xu Q, et al. Enhanced mechanical properties of a novel heat resistant Al-based composite reinforced by the combination of nano-aluminides and submicron TiN particles [J]. Mater. Sci. Eng. A, 2020, 770: 138488
14 Duan M G, Li C, Li B, et al. Study on the high cycle fatigue properties of in-situ TiB2/7050 composite [J]. Acta Mater. Compo. Sin., 2023, 40(11): 6430
段敏鸽, 李 晨, 李 彪 等. 原位自生TiB2/7050铝基复合材料高周疲劳特性 [J]. 复合材料学报, 2023, 40(11): 6430
15 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
16 Kareem S A, Anaele J U, Aikulola E O, et al. Aluminium matrix composites reinforced with high entropy alloys: A comprehensive review on interfacial reactions, mechanical, corrosion, and tribological characteristics [J]. J. Mater. Res. Technol., 2024, 30: 8161
17 Yang X, Liang Z, Wang L W, et al. Interface structure and tensile behavior of high entropy alloy particles reinforced Al matrix composites by spark plasma sintering [J]. Mater. Sci. Eng. A, 2022, 860: 144273
18 Wang P J, Ai T T, Liao Z N, et al. Microstructure and mechanical properties of high-entropy alloys (FeNiCoCr)100 - x Al x (x = 0, 5) prepared by hot-pressing sintering [J]. Chin. J. Mater. Res., 2022, 36(11): 871
王沛锦, 艾桃桃, 廖仲尼 等. 热压烧结(FeNiCoCr)100 - x Al x (x = 0, 5)高熵合金的微观组织及力学性能 [J]. 材料研究学报, 2022, 36(11): 871
doi: 10.11901/1005.3093.2021.383
19 He Y Q, Su Q H, Huan C B, et al. Preparation and properties of AlFeNiCrCoTi0.5 high entropy alloy particle reinforced 6061 aluminum matrix composites [J]. J. Mater. Eng., 2023, 51(3): 67
贺毅强, 苏前航, 郇昌宝 等. AlFeNiCrCoTi0.5高熵合金颗粒增强6061铝基复合材料的制备与性能 [J]. 材料工程, 2023, 51(3): 67
doi: 10.11868/j.issn.1001-4381.2021.001181
20 Yang X, Zhang H, Dong P, et al. A study on the formation of multiple intermetallic compounds of friction stir processed high entropy alloy particles reinforced Al matrix composites [J]. Mater. Charact., 2022, 183: 111646
21 Lu T, He T, Li Z, et al. Microstructure, mechanical properties and machinability of particulate reinforced Al matrix composites: a comparative study between SiC particles and high-entropy alloy particles [J]. J. Mater. Res. Technol, 2020, 9(6): 13646
22 Luo K, Lei G, Liu S, et al. Mechanical properties and microstructure evolution of cryorolled AlCoCrFeNi-reinforced aluminum matrix composites tensile tested at room and cryogenic temperatures [J]. Metall. Mater. Trans. A, 2023, 54(6): 2292
23 Zhang Y, Luo K, Lei G, et al. Interfacial characteristics and enhanced mechanical properties of Al0.5CoCrFeNi high-entropy alloy particles reinforced Al matrix composites [J]. Metall. Mater. Trans. A, 2022, 53(12): 4161
24 Soorya Prakash K, Gopal P M, Purusothaman M, et al. Fabrication and characterization of metal-high entropy alloy composites [J]. Int. J. Metalcast., 2019, 14(2): 547
25 Gao J, Wang X, Zhang S, et al. Producing of FeCoNiCrAl high-entropy alloy reinforced Al composites via friction stir processing technology [J]. Int. J. Adv. Manuf. Tech., 2020, 110(1-2): 569
26 Li P, Tong Y, Wang X, et al. Microstructures and mechanical properties of AlCoCrFeNi2.1/6061-T6 aluminum-matrix composites prepared by friction stir processing [J]. Mater. Sci. Eng. A, 2023, 863: 144544
27 Yuan Z, Tian W, Li F, et al. Microstructure and properties of high-entropy alloy reinforced aluminum matrix composites by spark plasma sintering [J]. J. Alloy. Compd., 2019, 806: 901
28 Liu Y, Chen J, Li Z, et al. Formation of transition layer and its effect on mechanical properties of AlCoCrFeNi high-entropy alloy/Al composites [J]. J. Alloy. Compd., 2019, 780: 558
29 Liu Y, Chen J, Wang X, et al. Significantly improving strength and plasticity of Al-based composites by in-situ formed AlCoCrFeNi core-shell structure [J]. J. Mater. Res. Technol., 2021, 15: 4117
30 Wang Y, Chen Y, Xie J, et al. High entropy alloy reinforced aluminum matrix composites prepared by novel rotation friction extrusion process: Microstructure and mechanical properties [J]. Mater. Sci. Eng. A, 2022, 854: 143789
31 Yuan Z, Tian W, Li F, et al. Effect of heat treatment on the interface of high-entropy alloy particles reinforced aluminum matrix composites [J]. J. Alloy. Compd., 2020, 822: 153658
32 Cheng H, Xie Y, Tang Q, et al. Microstructure and mechanical properties of FeCoCrNiMn high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering [J]. Trans. Nonferrous Met. Soc. China, 2018, 28(7): 1360
33 Ding F J, Jia X D, Hong T J, et al. Influence of different heat treatment processes on plasticity and hardness of 6061 aluminum alloy [J]. Mater. Rev., 2021, 35(08): 8108-8115+8120
丁凤娟, 贾向东, 洪腾蛟 等. 不同热处理工艺对6061铝合金塑性和硬度的影响 [J]. 材料导报, 2021, 35(08): 8108-8115+8120
34 Han P, Wang W, Liu Z, et al. Modification of cold-sprayed high-entropy alloy particles reinforced aluminum matrix composites via friction stir processing [J]. J. Alloy. Compd., 2022, 907: 164426
35 Wan B, Lu T, Xu X, et al. Achieving high strength and ductility in high-entropy alloy particle reinforced Al matrix composites with proper proportion of layered structures [J]. Mater. Charact., 2023, 205: 113354
36 Luo K, Liu S, Xiong H, et al. Mechanical properties and strengthening mechanism of aluminum matrix composites reinforced by high-entropy alloy particles [J]. Met. Mater. Int., 2022, 28(11): 2811
37 Zhang Y, Li X, Gu H, et al. Insight of high-entropy alloy particles-reinforced 2219 Al matrix composites via the ultrasonic casting technology [J]. Mater. Charact., 2021, 182: 111548
38 Tao R, Zhao Y T, Chen G, et al. Microstructure and properties of in-situ ZrB2 np/AA6111 composites synthesized under an electromagnetic field [J]. Acta Metall. Sin., 2019, 55(1): 160
陶 然, 赵玉涛, 陈 刚 等. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究 [J]. 金属学报, 2019, 55(1): 160
[1] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[2] LIU Yanyun, WANG Na, ZHANG Zhihua, BAI Wen, LIU Yunjie, CHEN Yongqiang, LI Wanxi, LI Yu. MOFs Derived C/LDH/rGO Network Composite Materials for High Specific Capacity High-performance Aqueous Zinc Ion Capacitors[J]. 材料研究学报, 2025, 39(5): 371-376.
[3] LI Qingpeng, LIU Jiaxing, AN Xiaoyun, LI Yongzhi, GAO Meng, SUN Hongtao, WANG Na. Preparation and Properties of High Performance Silane Conversion Film on Electroplated Zinc Surface[J]. 材料研究学报, 2025, 39(4): 296-304.
[4] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[5] LI Ying, NIE Xuetong, QIAN Liguo, ZHU Yiren. Synthesis of Co3O4/ZnO@MG-C3Nx Catalysts and Their Visible Light Degradation of Methylene Blue Performance[J]. 材料研究学报, 2025, 39(4): 241-250.
[6] ZHANG Senhan, WANG Huan, ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, ZHAO Yonghua. Alkali-modified HZSM-5 Zeolite/Cu-ZnO-Al2O3 Bifunctional Catalyst for Hydrogen Production via Steam Reforming of Dimethyl Ether[J]. 材料研究学报, 2025, 39(4): 251-258.
[7] SUN Bo, ZHANG Tianyu, ZHAO Qiangqiang, WANG Han, TONG Yu, ZENG You. Electromagnetic Shielding Performance of MXene@Carbon Fiber Felt Composite Films[J]. 材料研究学报, 2025, 39(4): 289-295.
[8] LI Honglei, LIU Chuang, LU Zhengwei, CHU Tianyi, CHEN Yuqiu, JIANG Sumeng, GONG Jun, PEI Zhiliang. Preparation and Performance of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, 39(4): 314-320.
[9] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[10] HU Ming, ZHANG Xinquan, LI Weiqiang, YANG Xiaokang, HUANG Jinhu, LEI Xiaofei, QIU Jianke, DONG Limin. Effect of Fe- and Cu-content on Microstructure and Mechanical Properties of TC10 Ti-alloy Bars[J]. 材料研究学报, 2025, 39(3): 217-224.
[11] TANG Chen, ZHANG Yaozong, WANG Yifan, LIU Chao, ZHAO Derun, DONG Penghao. Preparation of α-Fe2O3/TiO2 Photocatalytic Material and Its Performance for Phenol Degradation[J]. 材料研究学报, 2025, 39(3): 233-240.
[12] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[13] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[14] ZHU Guohao, CHEN Ping, XU Jilei, SUN Huimin. Preparation and Properties of Curd Polyimide Modified by Oligomeric Polyimide[J]. 材料研究学报, 2025, 39(2): 103-112.
[15] YU Wenjing, LIU Chunzhong, ZHANG Hongliang, LU Tianni, WANG Dong, LI Na, HUANG Zhenwei. Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-arc Oxidation Film on Composites SiCP/6092 Al-alloy[J]. 材料研究学报, 2025, 39(2): 153-160.
No Suggested Reading articles found!