|
|
Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites |
HU Yong( ), LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao |
School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China |
|
Cite this article:
HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites. Chinese Journal of Materials Research, 2025, 39(5): 353-361.
|
Abstract Novel composites of FeCoCrNiMn particle reinforced 6061 Al-alloy matrix (FeCoCrNiMn/6061 Al-alloy)were prepared by vacuum hot-pressing sintering technique. The microstructure of the composites was studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The mechanical properties of the composites were measured by universal testing machine. The results indicate that the interface between FeCoCrNiMn particles and the 6061 Al-alloy matrix is well bonded, with a diffusion layer of approximately 0.5 μm at the interface. With the increase of the volume fraction of FeCoCrNiMn particles, the Brinell hardness, yield strength and tensile strength of the composites increase gradually, while the elongation at break decreases gradually. When the volume fraction of FeCoCrNiMn particles is 20%, the yield strength and tensile strength reach 137.53 MPa and 186.00 MPa, respectively, which are 71.12% and 24.41% higher than 6061 Al-alloy. The strengthening mechanisms of FeCoCrNiMn/6061 Al-alloy matrix composites may mainly be thermal mismatch strengthening, fine-grain strengthening and load transfer strengthening, among which the thermal mismatch strengthening contributes the most.
|
Received: 27 July 2024
|
|
Fund: National Natural Science Foundation of China(51865011);Natural Science Foundation of Jiangxi Province(20224BAB214048) |
Corresponding Authors:
HU Yong, Tel: 13576012078, E-mail: huyong@ecjtu.edu.cn
|
1 |
Garg P, Jamwal A, Kumar D, et al. Advance research progresses in aluminium matrix composites: manufacturing & applications [J]. J. Mater. Res. Technol., 2019, 8(5): 4924
|
2 |
Suthar J, Patel K M. Processing issues, machining, and applications of aluminum metal matrix composites [J]. Mater. Manuf. Process., 2017, 33(5): 499
|
3 |
Zhao Y F, Tian Z Y, Chen Z M, et al. Research progress in mechanical properties of AlN reinforced aluminum matrix composites [J]. J. Mater. Eng., 2023, 51(12): 24
doi: 10.11868/j.issn.1001-4381.2022.001005
|
|
赵永峰, 田泽源, 陈宗民 等. AlN增强铝基复合材料力学性能研究进展 [J]. 材料工程, 2023, 51(12): 24
doi: 10.11868/j.issn.1001-4381.2022.001005
|
4 |
Zhang L, Yang L, Leng J, et al. Alloying behavior and properties of Al-based composites reinforced with Al85Fe15 metallic glass particles fabricated by mechanical alloying and hot pressing consolidation [J]. JOM, 2017, 69(4): 748
|
5 |
Hu J, Wu G, Zhang Q, et al. Damping capacity of the Al matrix composite reinforced with SiC particle and TiNi fiber [J]. Sci. Eng. Compos. Mater., 2016, 23(2): 179
|
6 |
Xiang Z B, Nie J H, Wei S H, et al. Effects of particle-matrix matching on strengthening mechanism of particle reinforced Al matrix composites [J]. Chin. J. Mater. Res., 2015, 29(10): 744
doi: 10.11901/1005.3093.2014.591
|
|
向兆兵, 聂俊辉, 魏少华 等. 增强颗粒与基体适配性对颗粒增强铝基复合材料强化机理的影响 [J]. 材料研究学报, 2015, 29(10): 744
doi: 10.11901/1005.3093.2014.591
|
7 |
Ye T, Xu Y, Ren J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite [J]. Mater. Sci. Eng. A, 2019, 753: 146
|
8 |
Wang H M, Su W X, Liu J Q, et al. Microstructure and properties of FeCoNiCrMn and Al2O3 hybrid particle-reinforced aluminum matrix composites fabricated by microwave sintering [J]. J. Mater. Res. Technol., 2023, 24: 8618
|
9 |
Farid W, Bah T A, Kong C, et al. A novel way to fabricate high elastic modulus and high strength of TiC reinforced aluminum matrix composite [J]. Mater. Manuf. Process., 2023, 38(14): 1785
|
10 |
Liu R F, Wang W X, Zhao W. Microstructure and mechanical properties of micro/nano B4C particle reinforced 6061Al matrix composites [J]. Acta Mater. Compo. Sin., 2021, 38(10): 3394
|
|
刘瑞峰, 王文先, 赵 威. 微/纳B4C增强6061Al复合材料微观结构及力学性能 [J]. 复合材料学报, 2021, 38(10): 3394
|
11 |
Zhuang W, Yang H, Yang W, et al. Microstructure, tensile properties, and wear resistance of in situ TiB2/6061 composites prepared by high energy ball milling and stir casting [J]. J. Mater. Eng. Perform., 2021, 30(10): 7730
|
12 |
Li Q, Bao X, Zhao S, et al. The influence of AlFeNiCrCoTi high-entropy alloy on microstructure, mechanical properties and tribological behaviors of aluminum matrix composites [J]. Int. J. Metalcast., 2020, 15(1): 281
|
13 |
Li J, Nie J, Xu Q, et al. Enhanced mechanical properties of a novel heat resistant Al-based composite reinforced by the combination of nano-aluminides and submicron TiN particles [J]. Mater. Sci. Eng. A, 2020, 770: 138488
|
14 |
Duan M G, Li C, Li B, et al. Study on the high cycle fatigue properties of in-situ TiB2/7050 composite [J]. Acta Mater. Compo. Sin., 2023, 40(11): 6430
|
|
段敏鸽, 李 晨, 李 彪 等. 原位自生TiB2/7050铝基复合材料高周疲劳特性 [J]. 复合材料学报, 2023, 40(11): 6430
|
15 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
|
16 |
Kareem S A, Anaele J U, Aikulola E O, et al. Aluminium matrix composites reinforced with high entropy alloys: A comprehensive review on interfacial reactions, mechanical, corrosion, and tribological characteristics [J]. J. Mater. Res. Technol., 2024, 30: 8161
|
17 |
Yang X, Liang Z, Wang L W, et al. Interface structure and tensile behavior of high entropy alloy particles reinforced Al matrix composites by spark plasma sintering [J]. Mater. Sci. Eng. A, 2022, 860: 144273
|
18 |
Wang P J, Ai T T, Liao Z N, et al. Microstructure and mechanical properties of high-entropy alloys (FeNiCoCr)100 - x Al x (x = 0, 5) prepared by hot-pressing sintering [J]. Chin. J. Mater. Res., 2022, 36(11): 871
|
|
王沛锦, 艾桃桃, 廖仲尼 等. 热压烧结(FeNiCoCr)100 - x Al x (x = 0, 5)高熵合金的微观组织及力学性能 [J]. 材料研究学报, 2022, 36(11): 871
doi: 10.11901/1005.3093.2021.383
|
19 |
He Y Q, Su Q H, Huan C B, et al. Preparation and properties of AlFeNiCrCoTi0.5 high entropy alloy particle reinforced 6061 aluminum matrix composites [J]. J. Mater. Eng., 2023, 51(3): 67
|
|
贺毅强, 苏前航, 郇昌宝 等. AlFeNiCrCoTi0.5高熵合金颗粒增强6061铝基复合材料的制备与性能 [J]. 材料工程, 2023, 51(3): 67
doi: 10.11868/j.issn.1001-4381.2021.001181
|
20 |
Yang X, Zhang H, Dong P, et al. A study on the formation of multiple intermetallic compounds of friction stir processed high entropy alloy particles reinforced Al matrix composites [J]. Mater. Charact., 2022, 183: 111646
|
21 |
Lu T, He T, Li Z, et al. Microstructure, mechanical properties and machinability of particulate reinforced Al matrix composites: a comparative study between SiC particles and high-entropy alloy particles [J]. J. Mater. Res. Technol, 2020, 9(6): 13646
|
22 |
Luo K, Lei G, Liu S, et al. Mechanical properties and microstructure evolution of cryorolled AlCoCrFeNi-reinforced aluminum matrix composites tensile tested at room and cryogenic temperatures [J]. Metall. Mater. Trans. A, 2023, 54(6): 2292
|
23 |
Zhang Y, Luo K, Lei G, et al. Interfacial characteristics and enhanced mechanical properties of Al0.5CoCrFeNi high-entropy alloy particles reinforced Al matrix composites [J]. Metall. Mater. Trans. A, 2022, 53(12): 4161
|
24 |
Soorya Prakash K, Gopal P M, Purusothaman M, et al. Fabrication and characterization of metal-high entropy alloy composites [J]. Int. J. Metalcast., 2019, 14(2): 547
|
25 |
Gao J, Wang X, Zhang S, et al. Producing of FeCoNiCrAl high-entropy alloy reinforced Al composites via friction stir processing technology [J]. Int. J. Adv. Manuf. Tech., 2020, 110(1-2): 569
|
26 |
Li P, Tong Y, Wang X, et al. Microstructures and mechanical properties of AlCoCrFeNi2.1/6061-T6 aluminum-matrix composites prepared by friction stir processing [J]. Mater. Sci. Eng. A, 2023, 863: 144544
|
27 |
Yuan Z, Tian W, Li F, et al. Microstructure and properties of high-entropy alloy reinforced aluminum matrix composites by spark plasma sintering [J]. J. Alloy. Compd., 2019, 806: 901
|
28 |
Liu Y, Chen J, Li Z, et al. Formation of transition layer and its effect on mechanical properties of AlCoCrFeNi high-entropy alloy/Al composites [J]. J. Alloy. Compd., 2019, 780: 558
|
29 |
Liu Y, Chen J, Wang X, et al. Significantly improving strength and plasticity of Al-based composites by in-situ formed AlCoCrFeNi core-shell structure [J]. J. Mater. Res. Technol., 2021, 15: 4117
|
30 |
Wang Y, Chen Y, Xie J, et al. High entropy alloy reinforced aluminum matrix composites prepared by novel rotation friction extrusion process: Microstructure and mechanical properties [J]. Mater. Sci. Eng. A, 2022, 854: 143789
|
31 |
Yuan Z, Tian W, Li F, et al. Effect of heat treatment on the interface of high-entropy alloy particles reinforced aluminum matrix composites [J]. J. Alloy. Compd., 2020, 822: 153658
|
32 |
Cheng H, Xie Y, Tang Q, et al. Microstructure and mechanical properties of FeCoCrNiMn high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering [J]. Trans. Nonferrous Met. Soc. China, 2018, 28(7): 1360
|
33 |
Ding F J, Jia X D, Hong T J, et al. Influence of different heat treatment processes on plasticity and hardness of 6061 aluminum alloy [J]. Mater. Rev., 2021, 35(08): 8108-8115+8120
|
|
丁凤娟, 贾向东, 洪腾蛟 等. 不同热处理工艺对6061铝合金塑性和硬度的影响 [J]. 材料导报, 2021, 35(08): 8108-8115+8120
|
34 |
Han P, Wang W, Liu Z, et al. Modification of cold-sprayed high-entropy alloy particles reinforced aluminum matrix composites via friction stir processing [J]. J. Alloy. Compd., 2022, 907: 164426
|
35 |
Wan B, Lu T, Xu X, et al. Achieving high strength and ductility in high-entropy alloy particle reinforced Al matrix composites with proper proportion of layered structures [J]. Mater. Charact., 2023, 205: 113354
|
36 |
Luo K, Liu S, Xiong H, et al. Mechanical properties and strengthening mechanism of aluminum matrix composites reinforced by high-entropy alloy particles [J]. Met. Mater. Int., 2022, 28(11): 2811
|
37 |
Zhang Y, Li X, Gu H, et al. Insight of high-entropy alloy particles-reinforced 2219 Al matrix composites via the ultrasonic casting technology [J]. Mater. Charact., 2021, 182: 111548
|
38 |
Tao R, Zhao Y T, Chen G, et al. Microstructure and properties of in-situ ZrB2 np/AA6111 composites synthesized under an electromagnetic field [J]. Acta Metall. Sin., 2019, 55(1): 160
|
|
陶 然, 赵玉涛, 陈 刚 等. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究 [J]. 金属学报, 2019, 55(1): 160
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|