|
|
Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-arc Oxidation Film on Composites SiCP/6092 Al-alloy |
YU Wenjing1, LIU Chunzhong1( ), ZHANG Hongliang1, LU Tianni1, WANG Dong2, LI Na1, HUANG Zhenwei1 |
1 Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
YU Wenjing, LIU Chunzhong, ZHANG Hongliang, LU Tianni, WANG Dong, LI Na, HUANG Zhenwei. Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-arc Oxidation Film on Composites SiCP/6092 Al-alloy. Chinese Journal of Materials Research, 2025, 39(2): 153-160.
|
Abstract Composites of SiCP/6092 Al-alloy with 0%, 17% and 30% SiC (volume fraction) were prepared by powder metallurgy, and then micro-arc oxidation films were made on the composites in sodium silicate electrolyte via micro-arc oxidation facility with an adjustable double pulse power supplier, and then the microstructure and composition, as well as the corrosion resistance of the micro-arc oxidation films were characterized by XRD, SEM, and Auto-Lab methods. The results show that the prepared films composed of an inner dense layer and an external loose layer, which are mainly composed of α-Al2O3, γ-Al2O3 and Mullite. There are many tiny pores on the film surface, and the pore diameter and surface roughness decrease with the increase of SiC content in the matrix. The SiC particles in the matrix have an inhibitory effect during the micro arc oxidation process, thus the growth of the oxide films slows down with the increase of SiC content, but the SiC particles do not decompose to participate in the oxidation reaction. The thickness of the loose layer decreases first and then increases with the increase of SiC content, and the thickness of the dense layer increases first and then decreases with the increase of SiC content. Among others, the oxide film on the composite of SiCP/6092 Al-alloy with 17% SiC (volume fraction) particles had the best corrosion resistance with free corrosion potential of -0.466 V, corrosion current density of 3.82 × 10-9 A·cm-2 and polarization resistance of 1.0 × 105 Ω·cm2.
|
Received: 28 December 2023
|
|
Corresponding Authors:
LIU Chunzhong, Tel: 18040038858, E-mail: czliu@sau.edu.cn
|
1 |
Alsrayheen E, McLeod E, Rateick R, et al. Impact of ac/dc spark anodizing on the corrosion resistance of Al-Cu alloys [J]. Electrochim. Acta, 2011, 56(17): 6041
|
2 |
Fadaee H, Javidi M. Investigation on the corrosion behaviour and microstructure of 2024-T3 Al alloy treated via plasma electrolytic oxidation [J]. J. Alloys Compd., 2014, 604: 36
|
3 |
Allachi H, Chaouket F, Draoui K. Corrosion inhibition of AA6060 aluminium alloy by lanthanide salts in chloride solution [J]. J. Alloy Compd., 2009, 475(1-2): 300
|
4 |
Li H X, Rudnev V S, Zheng X H, et al. Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation [J]. J. Alloy Compd., 2008, 462(1-2): 99
|
5 |
Hihara L H, Latanision R M. Corrosion of metal matrix composites [J]. Int. Mater. Rev., 1994, 39: 245
|
6 |
Paciej R C, Agarwala V S. Influence of processing variables on the corrosion susceptibility of metal-matrix composites [J]. Corrosion, 1988, 44: 680
|
7 |
England J, Hall I W. On the effect of the strength of the matrix in metal matrix composites [J]. Scr. Metall., 1986, 20: 697
|
8 |
Arsenault R J, Fisher R M. Microstructure of fiber and particulate SiC in 6061 Al composites [J]. Scr. Metall., 1983, 17(1): 67
|
9 |
Hihara L H, Latanision R M. Galvanic corrosion of aluminum-matrix composites [J]. Corrosion, 1992, 48: 546
|
10 |
Deuis R L, Green L, Subramanian C, et al. Influence of the reinforcement phase on the corrosion of aluminium composite coatings [J]. J. Mater. Sci. Lett., 1997, 16: 440
|
11 |
Deuis R L, Green L, Subramanian C, et al. Corrosion behavior of aluminum composite coatings [J]. Corrosion, 1997, 53: 880
|
12 |
Wei T B, Tian J, Yan F Y. Structure and wear-resistant properties of ceramic layer on LY12 Al alloy by micro-arc oxidation [J]. Chin. J. Mater. Res., 2004, 18(2): 161
|
|
魏同波, 田 军, 阎逢元. LY12铝合金微弧氧化陶瓷层的结构和性能 [J]. 材料研究学报, 2004, 18(2): 161
|
13 |
Xia L Q, Han J M, Yang S, et al. Growth process of scanning micro arc oxidation coatings on A356 alloy and their corrosion resistance [J]. Chin. J. Mater. Res., 2016, 30(12): 914
|
|
夏伶勤, 韩建民, 杨 莎 等. A356铝合金扫描式微弧氧化涂层的成膜过程及耐腐蚀性能 [J]. 材料研究学报, 2016, 30(12): 914
doi: 10.11901/1005.3093.2016.395
|
14 |
Gao W, Liu J N, Wei J P, et al. Structure and properties of Cu2O doped micro arc oxidation coating on TC4 titanium alloy [J]. Chin. J. Mater. Res., 2022, 36(6): 409
doi: 10.11901/1005.3093.2021.411
|
|
高 巍, 刘江南, 魏敬鹏 等. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能 [J]. 材料研究学报, 2022, 36(6): 409
|
15 |
Bayati M R, Moshfegh A Z, Golestani-Fard F, et al. (WO3) x -(TiO2)1- x nano-structured porous catalysts grown by micro-arc oxidation method: characterization and formation mechanism [J]. Mater. Chem. Phys., 2010, 124(1): 203
|
16 |
Xue W B, Deng Z W, Lai Y, et al. Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy [J]. J. Am. Ceram. Soc., 1998, 81(5): 1365
|
17 |
Krishna L R, Purnima A S, Sundararajan G. A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings [J]. Wear, 2006, 261(10): 1095
|
18 |
Lee K M, Ko Y G, Shin D H. Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: coating structure and corrosion properties [J]. Curr. Appl. Phys., 2011, 11(suppl.4): S55
|
19 |
Doolabi D S, Ehteshamzadeh M, Mirhosseini S M M. Effect of NaOH on the structure and corrosion performance of alumina and silica PEO coatings on aluminum [J]. J. Mater. Eng. Perform., 2012, 21(10): 2195
|
20 |
Hussein R O, Northwood D O, Nie X. The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys [J]. Surf. Coat. Technol., 2013, 237: 357
|
21 |
Li X J, Zhang M, Wen S, et al. Microstructure and wear resistance of micro-arc oxidation ceramic coatings prepared on 2A50 aluminum alloys [J]. Surf. Coat. Technol., 2020, 394: 125853
|
22 |
Sundararajan G, Krishna L R. Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology [J]. Surf. Coat. Technol., 2003, 167: 269
|
23 |
Wang Y Q, Wang X J, Gong W X, et al. Effect of SiC particles on microarc oxidation process of magnesium matrix composites [J]. Appl. Surf. Sci., 2013, 283: 906
|
24 |
Jiang C Y, Wang Y M, Wang S Q, et al. Growth characteristics and properties of plasma electrolytic oxidation coatings produced in different electrolytes on SiCP/Al composite [J]. Mater. Charact., 2023, 205: 113344
|
25 |
Du C Y, Huang S T, Yu X L, et al. Microstructure and properties of plasma electrolytic oxidation coating on 55% SiCP/Al matrix composites [J]. Surf. Coat. Technol., 2021, 420: 127321
|
26 |
Hou X Y, Huang H B, Li Y F, et al. Stable and variable—α-alumina: from properties, synthesis to applications [J]. China Ceram. Ind., 2022, 29(5): 30
|
|
侯欣怡, 黄灏彬, 李一凡 等. 稳定与多变—α-氧化铝: 从性质、合成到应用 [J]. 中国陶瓷工业, 2022, 29(5): 30
|
27 |
Tan X Y, Wang X, Yin Y S, et al. Crystal structure and valence electron structure of α-Al2O3 [J]. Chin. J. Nonferrous Met., 2002, 12(suppl.1): 18
|
|
谭训彦, 王 昕, 尹衍升 等. α-Al2O3的晶体结构与价电子结构 [J]. 中国有色金属学报, 2002, 12(增刊1): 18
|
28 |
Tran Q P, Sun J K, Kuo Y C, et al. Anomalous layer-thickening during micro-arc oxidation of 6061 Al alloy [J]. J. Alloy Compd., 2017, 697: 326
|
29 |
Sun H O, Li L C, Wang Z Y, et al. Corrosion behaviors of microarc oxidation coating and anodic oxidation on 5083 aluminum alloy [J]. J. Chem., 2020, 2020: 6082812
|
30 |
Wang P, Wu T, Xiao Y T, et al. Characterization of micro-arc oxidation coatings on aluminum drillpipes at different current density [J]. Vacuum, 2017, 142: 21
|
31 |
Wang D D, Liu X T, Wang Y, et al. Role of the electrolyte composition in establishing plasma discharges and coating growth process during a micro-arc oxidation [J]. Surf. Coat. Technol., 2020, 402: 126349
|
32 |
Yeshmanova G, Blawert C, Serdechnova M, et al. Effect of electrolyte composition on the formation of PEO coatings on AA2024 aluminium alloy [J]. Surf. Interfaces, 2024, 44: 103797
|
33 |
Kang D D, Feng Y, Han L, et al. Microstructure analysis of α-Al2O3 prepared by aluminum hydroxide [J]. Refractories, 2022, 56(3): 218
|
|
康冬冬, 冯 雨, 韩 露 等. 氢氧化铝制备α-Al2O3微观结构分析 [J]. 耐火材料, 2022, 56(3): 218
doi: 10.3969/j.issn.1001-1935.2022.03.009
|
34 |
Monfort F, Berkani A, Matykina E, et al. Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte [J]. Corros. Sci., 2007, 49(2): 672
|
35 |
Guo H F, An M Z. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance [J]. Appl. Surf. Sci., 2005, 246(1-3): 229
|
36 |
Shen D J, Li G L, Guo C H, et al. Microstructure and corrosion behavior of micro-arc oxidation coating on 6061 aluminum alloy pre-treated by high-temperature oxidation [J]. Appl. Surf. Sci., 2013, 287: 451
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|