Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (4): 251-258    DOI: 10.11901/1005.3093.2024.239
ARTICLES Current Issue | Archive | Adv Search |
Alkali-modified HZSM-5 Zeolite/Cu-ZnO-Al2O3 Bifunctional Catalyst for Hydrogen Production via Steam Reforming of Dimethyl Ether
ZHANG Senhan, WANG Huan, ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, ZHAO Yonghua()
School of Chemistry & Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
Cite this article: 

ZHANG Senhan, WANG Huan, ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, ZHAO Yonghua. Alkali-modified HZSM-5 Zeolite/Cu-ZnO-Al2O3 Bifunctional Catalyst for Hydrogen Production via Steam Reforming of Dimethyl Ether. Chinese Journal of Materials Research, 2025, 39(4): 251-258.

Download:  HTML  PDF(4369KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series of alkali-modified HZSM-5 zeolite were prepared via chemical treatment of the parent HZSM-5 with NaOH solution of different concentrations. And then, as solid acid, the alkali-modified HZSM-5 was physically mixed with commercial Cu-ZnO-Al2O3 to obtain bifunctional catalysts of HZSM-5 zeolite/Cu-ZnO-Al2O3 for steam reforming of dimethyl ether (SRD) reaction. The products were systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), N2 adsorption-desorption at low temperature, and NH3 temperature-programmed desorption (NH3-TPD) techniques. The results showed that the acidity and structure of the HZSM-5 could be effectively adjusted by altering the concentration of NaOH, and then affecting the SRD performance of the corresponding bifunctional catalyst. The bifunctional catalyst composed of the HZSM-5-0.4 treated by 0.4 mol/L NaOH and Cu-ZnO-Al2O3 exhibited the best SRD performance, i.e., the initial dimethyl ether conversion and H2 yield reached 100% and 93% under the conditions of reaction temperature 350 oC, pressure 0.1 MPa, space velocity 3000 mL/(g·h), respectively, and dimethyl ether conversion and H2 yield remained basically constant in 10 h, indicating that the catalyst had better stability.

Key words:  composite      alkali-modified HZSM-5      steam reforming      dimethyl ether      hydrogen production     
Received:  27 May 2024     
ZTFLH:  O643.3  
Fund: National Natural Science Foundation of China(22075120);Liaoning Provincial Applied Basic Research Project(2023JH2/101300216)
Corresponding Authors:  ZHAO Yonghua, Tel: (0416)4199013, E-mail: lgdzyh@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.239     OR     https://www.cjmr.org/EN/Y2025/V39/I4/251

Fig.1  XRD patterns of HZSM-5-m (a) HZSM-5, (b) HZSM-5-0.2, (c) HZSM-5-0.4, (d) HZSM-5-0.5
SamplesBET surface area / m2·g-1

Pore volume

/ cm3·g-1

Average pore size

/ nm

Relative crystallinitya / %I546 / I451b
HZSM-53970.201.991000.79
HZSM-5-0.23530.342.8685.80.41
HZSM-5-0.42140.5510.1731.80.12
HZSM-5-0.5710.7916.344.30.01
Table 1  Structure and texture characteristics of HZSM-5-m
Fig.2  FT-IR spectra of HZSM-5-m (a) HZSM-5, (b) HZSM-5-0.2, (c) HZSM-5-0.4, (d) HZSM-5-0.5
Fig.3  N2 adsorption-desorption isotherms of HZSM-5-m (a) HZSM-5, (b) HZSM-5-0.2, (c) HZSM-5-0.4, (d) HZSM-5-0.5
Fig.4  Pore size distributions of HZSM-5-m (a) HZSM-5, (b) HZSM-5-0.2, (c) HZSM-5-0.4, (d) HZSM-5-0.5
Fig.5  SEM photograph of HZSM-5-m (a) HZSM-5, (b) HZSM-5-0.2, (c) HZSM-5-0.4, (d) HZSM-5-0.5
Fig.6  NH3-TPD spectra of HZSM-5-m (a) HZSM-5, (b) HZSM-5-0.2, (c) HZSM-5-0.4, (d) HZSM-5-0.5
Fig.7  DME conversation (A), H2 yield (B) over HZSM-5-m/Cu-ZnO-Al2O3 bifunctional catalysts
Fig.8  Selectivity of the carbon-containing products over HZSM-5-m/Cu-ZnO-Al2O3 bifunctional catalysts
1 Bernay C, Marchand M, Cassir M. Prospects of different fuel cell technologies for vehicle applications [J]. J. Power Sources, 2002, 108(1-2): 139
2 Gao T Y, Zhao Y H, Zheng Z, et al. Acid activation of montmorillonite and its application for production of hydrogen via steam reforming of dimethyl ether [J]. J. Fuel Chem. Technol., 2021, 49(10): 1495
高天宇, 赵永华, 郑 择 等. 酸活化蒙脱土在二甲醚水蒸气重整制氢中的应用 [J]. 燃料化学学报, 2021, 49(10): 1495
3 Yang M, Men Y, Li S L, et al. Enhancement of catalytic activity over TiO2-modified Al2O3 and ZnO-Cr2O3 composite catalyst for hydrogen production via dimethyl ether steam reforming [J]. Appl. Catal., 2012, 433-434A: 26
4 Singh S, Jain S, Venkateswaran P S, et al. Hydrogen: a sustainable fuel for future of the transport sector [J]. Renew. Sustain. Energy Rev., 2015, 51: 623
5 Yang W W, Ma X, Tang X Y, et al. Review on developments of catalytic system for methanol steam reforming from the perspective of energy-mass conversion [J]. Fuel, 2023, 345: 128234
6 Long X, Zhang Q J, Liu Z T, et al. Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether [J]. Appl. Catal., 2013, 134-135B: 381
7 Li J, Zhang Q J, Long X, et al. Hydrogen production for fuel cells via steam reforming of dimethyl ether over commercial Cu/ZnO/Al2O3 and zeolite [J]. Chem. Eng. J., 2012, 187: 299
8 Gao T Y, Zhao Y H, Zhang Q J, et al. Zinc oxide modified HZSM-5 as an efficient acidic catalyst for hydrogen production by steam reforming of dimethyl ether [J]. React. Kinet. Mech. Catal., 2019, 128: 235
9 Tanaka Y, Kikuchi R, Takeguchi T, et al. Steam reforming of dimethyl ether over composite catalysts of γ-Al2O3 and Cu-based spinel [J]. Appl. Catal., 2005, 57B: 211
10 Nishiguchi T, Oka K, Matsumoto T, et al. Durability of WO3/ZrO2-CuO/CeO2 catalysts for steam reforming of dimethyl ether [J]. Appl. Catal., 2006, 301A(1) : 66
11 Faungnawakij K, Kikuchi R, Shimoda N, et al. Effect of thermal treatment on activity and durability of CuFe2O4-Al2O3 composite catalysts for steam reforming of dimethyl ether [J]. Angew. Chem. Int. Ed., 2008, 47: 9314
doi: 10.1002/anie.200802809 pmid: 18979476
12 Deng X Q, Yang T T, Zhang Q, et al. A monolith CuNiFe/γ-Al2O3/Al catalyst for steam reforming of dimethyl ether and applied in a microreactor [J]. Int. J. Hydrog. Energy, 2019, 44(5): 2417
13 Kim D, Park G, Choi B, et al. Reaction characteristics of dimethyl ether (DME) steam reforming catalysts for hydrogen production [J]. Int. J. Hydrog. Energy, 2017, 42(49): 29210
14 Shimoda N, Faungnawakij K, Kikuchi R, et al. Degradation and regeneration of copper-iron spinel and zeolite composite catalysts in steam reforming of dimethyl ether [J]. Appl. Catal., 2010, 378A: 234
15 Sheng Q T, Niu Y X, Shen J, et al. Influence of modification methods on porosity, acidity and catalytic properties of HZSM-5 zeolite in dehydration ethanol to ethylene [J]. Acta Pet. Sin. (Pet. Process. Sect.), 2017, 33(2): 242
盛清涛, 牛艳霞, 申 峻 等. 改性方法对HZSM-5分子筛孔结构、酸性质及乙醇脱水制乙烯催化性能的影响 [J]. 石油学报(石油加工), 2017, 33(2): 242
16 Wei Z H, Xia T F, Liu M H, et al. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration [J]. Front. Chem. Sci. Eng., 2015, 9(4): 450
doi: 10.1007/s11705-015-1542-2
17 Ahmadpour J, Taghizadeh M. Selective production of propylene from methanol over high-silica mesoporous ZSM-5 zeolites treated with NaOH and NaOH/tetrapropylammonium hydroxide [J]. C. R. Chim., 2015, 18: 834
18 Zhao Y H, Gao T Y, Wang Y J, et al. Zinc supported on alkaline activated HZSM-5 for aromatization reaction [J]. React. Kinet. Mech. Catal., 2018, 125: 1085
19 Sadowska K, Góra-Marek K, Drozdek M, et al. Desilication of highly siliceous zeolite ZSM-5 with NaOH and NaOH/tetrabutylamine hydroxide [J]. Microporous Mesoporous Mater., 2013, 168: 195
20 Wang Y G, Gui J Z, Zhang X T, et al. Synthesis and characterization of nanosized ZSM-5 zeolite [J]. Chin. J. Spectrosc. Lab., 2005, 22(2): 225
王荧光, 桂建舟, 张晓彤 等. 纳米ZSM-5分子筛的合成与表征 [J]. 光谱实验室, 2005, 22(2): 225
21 Luo C W, Huang C, Li A, et al. Influence of reaction parameters on the catalytic performance of alkaline-treated zeolites in the novel synthesis of pyridine bases from glycerol and ammonia [J]. Ind. Eng. Chem. Res., 2016, 55: 893
22 Shirazi L, Jamshidi E, Ghasemi M R. The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size [J]. Cryst. Res. Technol., 2008, 43: 1300
23 Zhang S G, Higashimoto S, Yamashita H, et al. Characterization of vanadium oxide/ZSM-5 zeolite catalysts prepared by the solid-state reaction and their photocatalytic reactivity: in situ photoluminescence, XAFS, ESR, FT-IR, and UV-vis investigations [J]. J. Phys. Chem. B, 1998, 102: 5590
24 Dumitriu D, Bârjega R, Frunza L, et al. BiO x clusters occluded in a ZSM-5 matrix: preparation, characterization, and catalytic behavior in liquid-phase oxidation of hydrocarbons [J]. J. Catal., 2003, 219: 337
25 Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure Appl. Chem., 2015, 87: 1051
26 Wang Q, Cui Z M, Cao C Y, et al. 0.3 Å makes the difference: dramatic changes in methanol-to-olefin activities between H-ZSM-12 and H-ZSM-22 zeolites [J]. J. Phys. Chem. C, 2011, 115: 24987
27 Luo H X, Zhao Y H, Zhang J K, et al. Oxide-pillared montmorillonite supported Cu catalyst for production of hydrogen via steam reforming of dimethyl ether [J]. Chin. J. Mater. Res., 202438 (11): 872
罗洪旭, 赵永华, 张家慷 等. 双功能催化剂(Cu-Co/X-MMT)的制备和性能 [J]. 材料研究学报, 202438 (11): 872
doi: 10.11901/1005.3093.2023.493
28 Faungnawakij K, Tanaka Y, Shimoda N, et al. Influence of solid-acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production [J]. Appl. Catal., 2006, 304A: 40
[1] LI Ying, NIE Xuetong, QIAN Liguo, ZHU Yiren. Synthesis of Co3O4/ZnO@MG-C3Nx Catalysts and Their Visible Light Degradation of Methylene Blue Performance[J]. 材料研究学报, 2025, 39(4): 241-250.
[2] LI Qingpeng, LIU Jiaxing, AN Xiaoyun, LI Yongzhi, GAO Meng, SUN Hongtao, WANG Na. Preparation and Properties of High Performance Silane Conversion Film on Electroplated Zinc Surface[J]. 材料研究学报, 2025, 39(4): 296-304.
[3] SUN Bo, ZHANG Tianyu, ZHAO Qiangqiang, WANG Han, TONG Yu, ZENG You. Electromagnetic Shielding Performance of MXene@Carbon Fiber Felt Composite Films[J]. 材料研究学报, 2025, 39(4): 289-295.
[4] TANG Chen, ZHANG Yaozong, WANG Yifan, LIU Chao, ZHAO Derun, DONG Penghao. Preparation of α-Fe2O3/TiO2 Photocatalytic Material and Its Performance for Phenol Degradation[J]. 材料研究学报, 2025, 39(3): 233-240.
[5] YU Wenjing, LIU Chunzhong, ZHANG Hongliang, LU Tianni, WANG Dong, LI Na, HUANG Zhenwei. Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-arc Oxidation Film on Composites SiCP/6092 Al-alloy[J]. 材料研究学报, 2025, 39(2): 153-160.
[6] BAO Xiukun, SHI Guimei. Preparation and Microwave Absorption Properties of NiCo@C(N)/NC Nanocomposites[J]. 材料研究学报, 2025, 39(2): 126-136.
[7] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[8] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
[9] CUI Sikai, FU Guangyan, LIN Lihai, YAN Yukun, LI Chusen. Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature[J]. 材料研究学报, 2024, 38(9): 659-668.
[10] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[11] ZHANG Hengyu, HUANG Zhaodan, DUAN Tigang, WEN Qing, LI Ruocan, WU Houran, MA Li, ZHANG Haibing. Electrocatalytic Oxygen Reduction of Carbon-based Hierarchical Pt@Co Composite Catalytic Cathode in Natural Seawater[J]. 材料研究学报, 2024, 38(8): 632-640.
[12] HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method[J]. 材料研究学报, 2024, 38(8): 605-613.
[13] TAN Shangrong, YAO Zhuo, LIU Zechen, JIANG Yilei, GUO Shiqi, LI Lili. Fabrication and Performance of Metal Organic Framework Zn-BTC/rGO Nanocomposites[J]. 材料研究学报, 2024, 38(8): 576-584.
[14] HAO Ziheng, ZHENG Liumenghan, ZHANG Ni, JIANG Entong, WANG Guozheng, YANG Jikai. Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes[J]. 材料研究学报, 2024, 38(8): 569-575.
[15] ZHOU Hui, DU Bin, YANG Pengbin, JIN Dangqin, XIAO Jiali, SHEN Ming, WANG Shengwen. Sodium Gluconate Assisted Synthesis of Nest-like Bi/β-Bi2O3 Heterojunction and Its Visible-light Driven Photocatalytic Activities[J]. 材料研究学报, 2024, 38(7): 549-560.
No Suggested Reading articles found!