Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (3): 207-216    DOI: 10.11901/1005.3093.2024.182
ARTICLES Current Issue | Archive | Adv Search |
Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification
RAN Zizuo1, ZHANG Shuang1(), SU Zhaoyi1, WANG Yang1, ZOU Cunlei1, ZHAO Yajun1, WANG Zengrui2, JIANG Weiwei1, DONG Chenxi1, DONG Chuang1
1.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
2.Shenyang Research Institute of Foundry Co. Ltd., Shenyang 110021, China
Cite this article: 

RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification. Chinese Journal of Materials Research, 2025, 39(3): 207-216.

Download:  HTML  PDF(2654KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

316 stainless steel is widely utilized due to its exceptional corrosion resistance and processibility. However, the broad composition range specified by the industrial standards can lead to obvious property variations. In this study, we first classify the solute elements of substitutional type into Cr-like ferrite stabilizer (Cr, Si, Mo) and Ni-like austenite stabilizer (Ni, Mn). Then we employ the “cluster-plus-glue-atom” model to obtain its composition unit, which contains 16 atoms. Accordingly, the GB standard is interpreted as being enclosed by five 16-atom formulas, corresponding respectively to the lower and upper limits of Cr- and Ni-like elements (Cr, Si, Mo)3.0625, 3.5-(Ni, Mn)1.75, 2.25-Febal and the mid-value (Cr, Si, Mo)3.25-(Ni, Mn)2-Febal. According to the above classification, five kinds of test steels were designed and melted by Ar-atmosphere arc furnace. Then in vacuum heat furnaces, they were homogenized (1150 oC/2 h/furnace cooling), cold-rolled (50% deformation) to 5mm sheets, and finally solutioned (1050 oC/0.5 h/water quenching). The steels containing the lowest Ni-like content of 1.75 in the 16-atom formulas (10.9%, atom fraction), form ferrite in austenite matrix, corresponding to the composition range of (21.2~18.5) (Cr, Si, Mo)-11.4(Ni, Mn)-Fe (%, mass fraction). The other three test steels consist of only single austenite phase. The average hardness value after rolling and solutioning is 160HV approximately, satisfying the GB requirement (< 200HV). The electrochemical tests in 3.5% NaCl solution demonstrates that the steel Cr3.5-Ni2.25-Febal (Fe-17.8Cr-0.6Si-2.7Mo-14.0Ni-0.8Mn-0.021C), with the highest Cr-like element content, possesses the best corrosion resistance, next to it are alloys Cr3.0625-Ni2.25-Febal and Cr3.25-Ni2-Febal, containing Ni-like element above 2 in the formulas, covering a composition range of (18.4~21.1) (Cr, Si, Mo)-(14.7~13.0) (Ni, Mn)-Fe (%). The steels containing the highest Cr-like contents of 3.5 show the best pitting corrosion potential 0.211 V. It follows that the steel with proper amounts of alloying elements Cr3.25-Ni2-Febal (Fe-16.7Cr-0.4Si-2.7Mo-11.9Ni-1.2Mn-0.021C), falling in the middle of the formula zone, can not only form single-phase austenite, but also meet the standard requirements of Vickers hardness (~160HV), while its corrosion resistance is also high (free-corrosion potential -0.082 V, corrosion current density 1.83 × 10-6 A·cm-2, PREN 25.6, and pitting corrosion potential 0.19 V).

Key words:  metallic materials      composition optimization      cluster-plus-glue-atom model      316 stainless steel      microstructure      pitting corrosion     
Received:  25 April 2024     
ZTFLH:  TG142.71  
Fund: National Natural Science Foundation of China(52101127);National Natural Science Foundation of China(52171134);Foundation of Liaoning Province Education Administration(LJKMZ20220858);Foundation of Liaoning Province Education Administration(LJKMZ20220837);Foundation of Liaoning Province Education Administration(LJKMZ20220866);“Rejuvenating Liaoning Talents Plan” Project of Liaoning Province(XLYC2203121);Outstanding Youth Science and Technology Talent Project of Dalian(2023RY040)
Corresponding Authors:  ZHANG Shuang, Tel: (0411)84106876, E-mail: zhangshuang@djtu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.182     OR     https://www.cjmr.org/EN/Y2025/V39/I3/207

Fig.1  (Cr, Si, Mo)-(Ni, Mn)-Fe pseudo-ternary composition diagram of 316 stainless steel with the unit of number of atoms (total number per cluster formula being 16). The area enclosed by the red dotted lines represents the composition zone of 316 stainless steel in GB standards, while that by the blue solid lines labelled as ABFE is the optimized composition zone according to the cluster formulas, and the red triangles represent the designed compositions based on the cluster formulas
Alloy codesCluster formulasCompositions / %, mass fraction
BT(Cr, Si, Mo)3.5-(Ni, Mn)1.75-FebalFe-17.9Cr-0.6Si-2.7Mo-10.3Ni-1.2Mn-0.021C = Fe-21.2(Cr, Si, Mo)-11.4(Ni, Mn)-0.021C
BB(Cr, Si, Mo)3.0625-(Ni, Mn)1.75-FebalFe-16.0Cr-0.4Si-2.0Mo-10.3Ni-1.2Mn-0.021C = Fe-18.5(Cr, Si, Mo)-11.4(Ni, Mn)-0.021C
MM(Cr, Si, Mo)3.25-(Ni, Mn)2-FebalFe-16.7Cr-0.4Si-2.7Mo-11.9Ni-1.2Mn-0.021C = Fe-19.8(Cr, Si, Mo)-13.0(Ni, Mn)-0.021C
TB(Cr, Si, Mo)3.0625-(Ni, Mn)2.25-FebalFe-16.0Cr-0.4Si-2.0Mo-14.0Ni-0.8Mn-0.021C = Fe-18.4(Cr, Si, Mo)-14.7(Ni, Mn)-0.021C
TT(Cr, Si, Mo)3.5-(Ni, Mn)2.25-FebalFe-17.8Cr-0.6Si-2.7Mo-14.0Ni-0.8Mn-0.021C = Fe-21.1(Cr, Si, Mo)-14.7(Ni, Mn)-0.021C
Table 1  The designed compositions according to the 16-atom cluster formula of 316 stainless steel, with the alloy codes, cluster formulas, and compositions listed. The first letter of the alloy code indicates the content of Ni-like elements, and the second one indicates that of Cr-like elements, among which, B (bottom) means the lower limit, T (top) means the upper limit, and M (medium) means the medium values
Fig.2  XRD diffraction patterns of designed alloys in as-cast state (a) and as-final state (b)
Fig.3  OM images of as-cast alloys of Cr3.5-Ni1.75-Febal (a), Cr3.0625-Ni1.75-Febal (b), Cr3.25-Ni2-Febal (c), Cr3.0625-Ni2.25-Febal (d), and Cr3.5-Ni2.25-Febal (e)
Fig.4  SEM images of as-cast alloys of BT alloy Cr3.5-Ni1.75-Febal (a) and BB alloy Cr3.0625-Ni1.75-Febal (b)
Fig.5  OM images of as-final alloys of Cr3.5-Ni1.75-Febal (a), Cr3.0625-Ni1.75-Febal (b), Cr3.25-Ni2-Febal (c), Cr3.0625-Ni2.25-Febal (d), and Cr3.5-Ni2.25-Febal (e)
Fig.6  Vickers hardness of as-cast and as-final alloys
Fig.7  Polarization curves of as-cast alloys measured at a scan rate of 1 mV/s. Note that the abscissa is shown in logarithm
Fig.8  Tafel fitting results of the polarization curves of the as-final alloys
Alloy codesCluster formulasEcorr / VIcorr / A·cm-2Epit / VPREN
BT(Cr, Si, Mo)3.5-(Ni, Mn)1.75-Febal-0.1783.29 × 10-60.21126.755
BB(Cr, Si, Mo)3.0625-(Ni, Mn)1.75-Febal-0.1973.57 × 10-60.18122.699
MM(Cr, Si, Mo)3.25-(Ni, Mn)2-Febal-0.0821.83 × 10-60.19225.569
TB(Cr, Si, Mo)3.0625-(Ni, Mn)2.25-Febal-0.0512.70 × 10-60.17922.657
TT(Cr, Si, Mo)3.5-(Ni, Mn)2.25-Febal-0.0491.50 × 10-60.19926.705
Table 2  Electrochemical parameters of as-final alloys in 3.5% NaCl solution (These parameters are obtained from their corresponding polarization curves)
Fig.9  Pitting resistance equivalent values and pitting corrosion potentials (EPit) of as-final alloys
Fig.10  OM images of as-final alloys after electrochemical corrosion
Cluster formulasA(densities) / m-2B(sizes) / mm2GB-A / m-2GB-B / mm2Grades
(Cr, Si, Mo)3.5-(Ni, Mn)1.75-Febal6.4 × 1050.101 = 2.5 × 1031 = 0.5A-4、B-1
(Cr, Si, Mo)3.0625-(Ni, Mn)1.75-Febal8.1 × 1050.072 = 1 × 1042 = 2.0A-4、B-1
(Cr, Si, Mo)3.25-(Ni, Mn)2-Febal6.5 × 1050.063 = 5 × 1043 = 8.0A-4、B-1
(Cr, Si, Mo)3.0625-(Ni, Mn)2.25-Febal7.3 × 1050.154 = 1 × 1054 = 12.5A-4、B-1
(Cr, Si, Mo)3.5-(Ni, Mn)2.25-Febal6.0 × 1050.035 = 5 × 1065 = 24.5A-4、B-1
Table 3  Pitting densities, sizes, and GB pitting rating criteria of as-final alloys
1 Stainless Steel Branch of China Special Steel Enterprises Association. Practical Handbook of Stainless Steels [M]. Beijing: China Science and Technology Publishing House, 2003
中国特钢企业协会不锈钢分会. 不锈钢实用手册 [M]. 北京: 中国科学技术出版社, 2003
2 Li J M, Liang J X, Liu Y P. Stainless Steels in China [M]. Beijing: Metallurgical Industry Press, 2021
李建民, 梁剑雄, 刘艳平. 中国不锈钢 [M]. 北京: 冶金工业出版社, 2021
3 Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses [J]. J. Phys. D: Appl. Phys., 2007, 40(15): R273-R291
4 Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses [J]. Int. Mater. Rev., 2020, 65(5): 286
5 Zhang S, Wang Q, Dong C. Composition genes in materials [J]. J. Mater. Inf., 2021, 1: 8
6 Zhang S, Dong C, Hӓussler P. Spherical-periodic order and relevant short-range structural units in simple crystal structures [J]. J. Vac. Sci. Technol. A, 2022, 40(2): 022201
7 Wang X D, Zhang S, Zou C L, et al. New composition standard of 304 stainless steel based on cluster formula [J]. Trans. Mater. Heat Treat., 2022, 43(9): 103
王晓东, 张 爽, 邹存磊 等. 基于团簇式的304不锈钢成分新标准 [J]. 材料热处理学报, 2022, 43(9): 103
doi: 10.13289/j.issn.1009-6264.2022-0095
8 . Cold rolled stainless steel plate, sheet and strip [S]. Beijing: Standards Press of China, 2015
. 不锈钢冷轧钢板和钢带 [S]. 北京: 中国标准出版社, 2015
9 Jiang H Z, Peng S, Hu Q Y, et al. Corrosion and Cavitation Erosion Resistance of 316L Stainless Steels Produced by Laser Metal Deposition [J]. Acta Metall. Sin., 2023, 60(11): 1512
蒋华臻, 彭 爽, 胡琦芸 等. 激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能 [J]. 金属学报, 2023, 60(11): 1512
10 G102-89. Standard practice for calculation of corrosion rates and related information from electrochemical measurements [S]. ASTM International, 2015
11 Wu D, Yu C, Wang Q, et al. Synchronous-hammer-forging-assisted laser directed energy deposition additive manufacturing of high-performance 316L samples [J]. J. Mater. Process. Tech., 2022, 307: 117695
12 Wang S, Xue H, Yang F Q, et al. Determination of the mechanical paramete rs of 316L austenitic stainless steel after cold working by using hardness test [J]. J. Xi'an Univ. Sci. Technol., 2021, 41(2): 340
王 帅, 薛 河, 杨富强 等. 利用硬度试验获取冷加工后316L不锈钢力学性能 [J]. 西安科技大学学报, 2021, 41(2): 340
13 Liang C H. Influence of nickel on crevice corrosion behavior of type 304 stainless steel in NaCl solution [J]. Corros. Sci. Protect. Technol., 1999, 11(3): 147
梁成浩. 镍对304不锈钢在NaCl溶液中缝隙腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 1999, 11(3): 147
14 Sun Y T, Tan X, Lei L L, et al. Revisiting the effect of molybdenum on pitting resistance of stainless steels [J]. Tungsten, 2021, 3(3): 329
15 Lee J. B. Effects of alloying elements, Cr, Mo and N on repassivation characteristics of stainless steels using the abrading electrode technique [J]. Mater. Chem. Phys., 2006, 99(2): 224
16 Lu Y C, Ives M B, Clayton C. R. Synergism of alloying elements and pitting corrosion resistance of stainless steels [J]. Corros. Sci., 1993, 35(1-4): 89
17 Lu Y C, Bandy R, Clayton C R, et al. Surface enrichment of nitrogen during passivation of a highly resistant stainless steel [J]. J. Electrochem. Soc., 1983, 130(8): 1774
18 Bandy R, Rooyen D V. Properties of nitrogen-containing stainless alloy designed for high resistance to pitting [J]. Corrosion, 1985, 41(4): 228
19 . Corrosion of metals and alloys—Evaluation of pitting corrosion [S]. Beijing: Standards Press of China, 2001
. 金属和合金的腐蚀点蚀评定方法 [S]. 北京: 中国标准出版社, 2001
20 Wang C, Zhu P, Wang F, et al. Anisotropy of microstructure and corrosion resistance of 316L stainless steel fabricated by wire and arc additive manufacturing [J]. Corros. Sci., 2022, 206: 110549
[1] . Effect of welding heat source mode on microstructure and properties of 5083-H111 aluminum alloy joint[J]. 材料研究学报, 2025, (4): 0-0.
[2] . Preparation and Performance research of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, (4): 0-0.
[3] . Influence of ternary compound biocides on the corrosion behavior of P110 steel under different oil-water ratio environments[J]. 材料研究学报, 2025, (4): 0-0.
[4] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[5] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[6] HU Pengqin, WANG Dong, LU Yuzhang, ZHANG Jian. Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2025, 39(3): 161-171.
[7] HU Ming, ZHANG Xinquan, LI Weiqiang, YANG Xiaokang, HUANG Jinhu, LEI Xiaofei, QIU Jianke, DONG Limin. Effect of Fe- and Cu-content on Microstructure and Mechanical Properties of TC10 Ti-alloy Bars[J]. 材料研究学报, 2025, 39(3): 217-224.
[8] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
[9] XU Congmin, LI Xueli, FU Anqing, SUN Shuwen, CHEN Zhiqiang, LI Chengchen. Effect of Compound Bactericidal Corrosion Inhibitor on Corrosion Behavior of N80 Steel at Different Temperatures[J]. 材料研究学报, 2025, 39(2): 145-152.
[10] WU Xiaoqi, WAN Hongjiang, MING Hongliang, WANG Jianqiu, KE Wei, HAN En-Hou. Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test[J]. 材料研究学报, 2025, 39(2): 92-102.
[11] MA Xiuge, WU Qinghui, PANG Jianchao, LIU Zengqian, LI Shouxin, LUO Kailun, ZHANG Zhefeng. Effect of Grain Boundary Misorientation on Tensile Properties of Bi-crystal Superalloy at Ambient and High Temperatures[J]. 材料研究学报, 2025, 39(2): 81-91.
[12] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[13] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[14] XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. 材料研究学报, 2025, 39(1): 55-62.
[15] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
No Suggested Reading articles found!