Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (5): 343-352    DOI: 10.11901/1005.3093.2024.211
ARTICLES Current Issue | Archive | Adv Search |
Oxidation Behavior of Self-passivated W-Cr-Zr Alloys as the First Wall Candidate Material
WU Yucheng1,2(), ZUO Tong1, TAN Xiaoyue1,2, ZHU Xiaoyong1,2, LIU Jiaqin3,4
1.School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2.National-Local Joint Research Center of Nonferrous Metals and Processing Technology, Hefei 230009, China
3.Institute of Industry and Equipment, Hefei University of Technology, Hefei 230009, China
4.Anhui Advanced Composite Material Design and Application Engineering Center, Hefei 230051, China
Cite this article: 

WU Yucheng, ZUO Tong, TAN Xiaoyue, ZHU Xiaoyong, LIU Jiaqin. Oxidation Behavior of Self-passivated W-Cr-Zr Alloys as the First Wall Candidate Material. Chinese Journal of Materials Research, 2025, 39(5): 343-352.

Download:  HTML  PDF(24613KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Self-passivating tungsten alloy (SPTA) inhibits the further oxidation by forming dense oxide scale on its surface. Therefore, the use of self-passivating tungsten alloys as the first wall candidate material for nuclear fusion is a material solution proposed to address the safety hazards that may arise in the event of loss-of-coolant accident in future nuclear fusion devices. The compact oxide scale formed on the surface of self-passivating tungsten alloys requires the participation of passivating elements, and their oxidation behavior is related to its composition and structure. Herein, an alloy W87.6-Cr11.4-Zr1.0 (in mass fraction) was prepared by mechanical alloying and field assisted sintering technology, then its oxidation behavior was assessed intermittently at 1000 oC in a flowing gas mixture Ar+20%O2 (volume fraction). The surface roughness, morphology and phase composition of the W-Cr-Zr alloy before and after oxidation were characterized by 3D laser measurement microscopy, scanning electron microscope (SEM) and X-ray diffraction instrument (XRD), and the influence of oxide scale structure on the subsequent oxidation behavior of W-Cr-Zr alloy was investigated. The results show that the larger the surface roughness, the more cracks of the oxide scale formed in the initial oxidation stage. In the subsequent oxidation process, cracks act as the short-circuit channel for inward migration of oxygen to accelerate the oxidation of the underneath alloy substrate, thus having a large linear oxidation rate. The top layer of the oxide scale formed by the oxidation of W-Cr-Zr alloy is Cr2WO6 with high temperature stability, and the inner layer is WO2.83 with easy sublimation. After the removal of the Cr2WO6 layer, a relatively loose Cr2WO6 layer can still grow in the subsequent oxidation process along with the severe oxidation of the matrix and the rapid sublimation of WO2.83, which has certain protectiveness for the substrate. Therefore, to adjust or control the microstructure and oxidation behavior of the tungsten alloy is of great reference value for material selection and operation safety of nuclear fusion device components.

Key words:  metallic materials      nuclear fusion      W-Cr-Zr alloy      self-passivating tungsten alloy      initial surface layer      oxidation behavior     
Received:  16 May 2024     
ZTFLH:  TL34  
Fund: Funds for International Cooperation and Exchange of National Natural Science Foundation of China(52020105014);National Key Research and Development Program of China(2022YFE03140001);National “Clean Energy New Materials and Technology” Subject Innovation and Intelligence Base Project (111 Project, No.B18018)
Corresponding Authors:  WU Yucheng, Tel: (0551)62905985, E-mail: ycwu@hfut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.211     OR     https://www.cjmr.org/EN/Y2025/V39/I5/343

Fig.1  Microstructure of W-Cr-Zr alloy before oxidation (a), the surface morphology of sample after different surface treatment (b~e) and the corresponding linear roughness (f)
Fig.2  Surface morphology of W-Cr-Zr alloy with different surface roughness after oxidation at 1000 oC for 2 min
(a) Ra = 0.64 μm, (b) Ra = 0.51 μm, (c) Ra = 0.41 μm, (d) Ra = 0.24 μm
Fig.3  Oxidation behavior curves of W-Cr-Zr alloy with different surfaces roughness when oxidation at 1000 oC (a) and the curve of linear oxidation rate as function of surface roughness (b)
Fig.4  XRD patterns of W-Cr-Zr alloy with different surfaces roughness after oxidation at 1000 oC for 20 h
Fig.5  Surface morphology of W-Cr-Zr alloy with different surface roughness after oxidation at 1000 oC for 20 h
(a) Ra = 0.64 μm, (b) Ra = 0.51 μm, (c) Ra = 0.41 μm, (d) Ra = 0.24 μm
Fig.6  Cross section of oxide scale of W-Cr-Zr alloy with different roughness surfaces after oxidation at 1000 oC for 20 h (a~d), the relationship between the thickness of oxide scale and surface roughness of samples before oxidation (e) and the surface roughness of oxide scales (f)
Fig.7  Mass change curves of W-Cr-Zr alloy oxidation at 1000 oC (red line) and continuous oxidation after remove the surface oxide (blue line)
Fig.8  XRD patterns of W-Cr-Zr alloy after oxidation 40 h, remove top surface layer and continuous oxidation 40 h
Fig.9  Surface morphology of W-Cr-Zr alloy after oxidation 40 h (a, b), after removing the top surface oxide layer (c, d) and then continuous oxidation 40 h (e, f)
Fig.10  Cross section of W-Cr-Zr alloy after oxidation 40 h (a), then oxidation 40 h, and the responding surface scanning energy spectra of W, Cr and O (b)
1 Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
doi: 10.11900/0412.1961.2018.00404
吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
2 Wu Y C. Research progress in irradiation damage behavior of tungsten and its alloys for nuclear fusion reactor [J]. Acta Metall. Sin., 2019, 55: 939
doi: 10.11900/0412.1961.2018.00405
吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展 [J]. 金属学报, 2019, 55: 939
doi: 10.11900/0412.1961.2018.00405
3 Nagy D, Humphry-Baker S A. An oxidation mechanism map for tungsten [J]. Scr. Mater., 2022, 209: 114373
4 Davis J W, Barabash V R, Makhankov A, et al. Assessment of tungsten for use in the ITER plasma facing components [J]. J. Nucl. Mater., 1998, 258-263: 308
5 Wegener T, Klein F, Litnovsky A, et al. Development of yttrium-containing self-passivating tungsten alloys for future fusion power plants [J]. Nucl. Mater. Energy, 2016, 9: 394
6 Maisonnier D, Cook I, Pierre S, et al. The European power plant conceptual study [J]. Fusion Eng. Des., 2005, 75-79: 1173
7 Gromov A, Kwon Y S, Choi P P. Interaction of tungsten nanopowders with air under different conditions [J]. Scr. Mater., 2005, 52(5): 375
8 Telu S, Patra A, Sankaranarayana M, et al. Microstructure and cyclic oxidation behavior of W-Cr alloys prepared by sintering of mechanically alloyed nanocrystalline powders [J]. Int. J. Refract. Met. Hard Mater., 2013, 36: 191
9 Koch F, Bolt H. Self passivating W-based alloys as plasma facing material for nuclear fusion [J]. Phys. Scr., 2007, 2007(T128): 100
10 Liu W, Di J, Zhang W X, et al. Oxidation resistance behavior of smart W-Si bulk composites [J]. Corros. Sci., 2020, 163: 108222
11 Litnovsky A, Wegener T, Klein F, et al. New oxidation-resistant tungsten alloys for use in the nuclear fusion reactors [J]. Phys. Scr., 2017, 2017(T170): 014012
12 Tan X Y, Klein F, Litnovsky A, et al. Evaluation of the high temperature oxidation of W-Cr-Zr self-passivating alloys [J]. Corros. Sci., 2019, 147: 201
doi: 10.1016/j.corsci.2018.11.022
13 Chen H Y, Yuan J L, Lü B H, et al. Research status and trend of ultra-precision polishing on tungsten surface for fusion reactors [J]. J. Mech. Eng., 2020, 56: 11
doi: 10.3901/JME.2020.21.011
陈泓谕, 袁巨龙, 吕冰海 等. 核聚变堆用钨表面超精密抛光的研究现状与趋势 [J]. 机械工程学报, 2020, 56: 11
doi: 10.3901/JME.2020.21.011
14 Nowak W J. Effect of surface roughness on oxidation resistance of stainless steel AISI 316Ti during exposure at high temperature [J]. J. Mater. Eng. Perform., 2020, 29(12): 8060
15 Li J, Cao T S, Cheng C, et al. Effect of initial surface roughness on the cyclic oxidation behavior of an austenitic stainless steel [J]. J. Mater. Sci., 2022, 57(14): 7310
16 Zhang J, Huang J P, Shang G F, et al. Effect of surface roughness on oxidation behavior of Ni-Cr-Al alloy at high temperatures [J]. Corros. Sci. Prot. Technol., 2016, 28: 531
张 俊, 黄嘉鹏, 尚根峰 等. 不同表面粗糙度镍铬铝合金的高温氧化行为 [J]. 腐蚀科学与防护技术, 2016, 28: 531
17 Sal E, Garcia-Rosales C, Schlueter K, et al. Microstructure, oxidation behaviour and thermal shock resistance of self-passivating W-Cr-Y-Zr alloys [J]. Nucl. Mater. Energy, 2020, 24: 100770
18 Zhu H J, Tan X Y, Tu Q B, et al. Effect of pressure on densification and microstructure of W-Cr-Y-Zr alloy during SPS consolidated at 1000 oC [J]. Metals, 2022, 12(9): 1437
19 Wang W J, Tan X Y, Yang S P, et al. The influence of powder characteristics on densification behavior and microstructure evolution of W-Cr-Zr alloy consolidated by field-assisted sintering technology [J]. Int. J. Refract. Met. Hard Mater., 2022, 108: 105939
20 Wu Y C, Wang W J, Tan X Y, et al. Multifunctional high-temperature atmosphere tube furnace with multiple temperature zones [P]. Chin Pat., 211043216U, 2020
吴玉程, 王武杰, 谭晓月 等. 一种多温区多功能高温气氛管式炉 [P]. 中国专利, 211043216U, 2020))
21 Schütze M. Stress effects in high temperature oxidation [J]. Mater. Sci. Eng., 2016
22 Wang X, Szpunar J A. Effects of grain sizes on the oxidation behavior of Ni-based alloy 230 and N [J]. J. Alloy. Compd., 2018, 752: 40
23 Gardinier C F, Chang L L Y. Phase relations in the systems Cr2O3-WO3 and Fe2O3-WO3 [J]. J. Am. Ceram. Soc., 1978, 61(7-8): 376
24 Bayer G. Cr2WO6, a new trirutile compound [J]. J. Am. Ceram. Soc., 1960, 43(9): 495
25 Meyer G, Oosterom J F, De Roo J L. The vapour pressure of tungsten trioxide [J]. Recl. Trav. Chim. Pays-Bas, 1959, 78(6): 412
26 Klein F. Studies of oxidation resistant tungsten alloys at temperatures of 1100 K to 1475 K [D]. Bochum: Ruhr-Universität Bochum, 2020
27 Czerwinski F. The reactive element effect on high-temperature oxidation of magnesium [J]. Int. Mater. Rev., 2015, 60(5): 264
28 Calvo A, Schlueter K, Tejado E, et al. Self-passivating tungsten alloys of the system W-Cr-Y for high temperature applications [J]. Int. J. Refract. Met. Hard Mater., 2018, 73: 29
[1] QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang, REN Yanjie, CHEN Jian. Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries[J]. 材料研究学报, 2025, 39(5): 389-400.
[2] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[3] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
[4] XU Congmin, SUN Shuwen, ZHU Wensheng, CHEN Zhiqiang, LI Chengchen. Influence of Ternary Compound Biocides on Corrosion Behavior of P110 Steel[J]. 材料研究学报, 2025, 39(4): 281-288.
[5] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[6] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[7] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
[8] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[9] HU Pengqin, WANG Dong, LU Yuzhang, ZHANG Jian. Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2025, 39(3): 161-171.
[10] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[11] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[12] WU Xiaoqi, WAN Hongjiang, MING Hongliang, WANG Jianqiu, KE Wei, HAN En-Hou. Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test[J]. 材料研究学报, 2025, 39(2): 92-102.
[13] MA Xiuge, WU Qinghui, PANG Jianchao, LIU Zengqian, LI Shouxin, LUO Kailun, ZHANG Zhefeng. Effect of Grain Boundary Misorientation on Tensile Properties of Bi-crystal Superalloy at Ambient and High Temperatures[J]. 材料研究学报, 2025, 39(2): 81-91.
[14] XU Congmin, LI Xueli, FU Anqing, SUN Shuwen, CHEN Zhiqiang, LI Chengchen. Effect of Compound Bactericidal Corrosion Inhibitor on Corrosion Behavior of N80 Steel at Different Temperatures[J]. 材料研究学报, 2025, 39(2): 145-152.
[15] XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. 材料研究学报, 2025, 39(1): 55-62.
No Suggested Reading articles found!