Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (4): 305-313    DOI: 10.11901/1005.3093.2024.140
ARTICLES Current Issue | Archive | Adv Search |
Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy
FU Chunguo1,2, XU Shiwei1,2, YANG Xiaoyi1,2(), LI Mengnie1,2()
1.Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650032, China
2.Yunnan Key Laboratory of Integrated Computational Materials Engineering for Advanced Light Metals, Kunming 650032, China
Cite this article: 

FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy. Chinese Journal of Materials Research, 2025, 39(4): 305-313.

Download:  HTML  PDF(18019KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

5083 Al-alloy with high strength, good corrosion resistance and thermal stability, is widely used in welding manufacturing. In this paper, by setting the same welding heat input, the welded joints of 5083-H111 Al-alloy sheets were prepared by gas metal arc welding techniques with the applying either pulsed direct current or constant direct current, respectively. Then the effect of welding techniques on the formation, microstructure and mechanical properties of welded joints were studied via metalloscopy, material mechanics testing machine, microhardness tester, and scanning electron microscope with EDS. The results indicate that the pulsed GMAW welds are smoother with better appearance, indicating that the arc pulses can partially inhibit the porosity formation of the weld joints. The area of columnar crystals formed in the Pulsed GMAW welds is larger, indicating that the temperature gradient of the molten pool is larger during pulsed arc welding. The mechanical properties of the weld joints were similar for the two current modes, which presented the joint strengths about 288~303 MPa corresponding to 90% that of the base metal. Fractures of the tensile samples occur in the weld metal, and the fracture surfaces reveal dimples. The decrease of weld strength is attributed to the presence of coarse grains and porosity.

Key words:  metallic materials      P-GMAW      CC-GMAW      macro forming      mechanical properties      microstructure     
Received:  01 April 2024     
ZTFLH:  TG444  
Fund: Yunnan Fundamental Research Projects(202501AT070354);Key Research & Development Program of Yunnan Province(202203AE140011)
Corresponding Authors:  YANG Xiaoyi, Tel: (0871)65915828, E-mail: yangxiaoyi@kust.edu.cnLI Mengnie, Tel: (0871)65109952, E-mail: limengnie@kust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.140     OR     https://www.cjmr.org/EN/Y2025/V39/I4/305

NameSiFeCuMnMgCrZnTiZrAl
5083-H1110.070.250.040.664.130.080.020.030.20Bal.
ER50870.090.180.030.714.710.080.010.080.12Bal.
Table 1  Main chemical compositions of 5083-H111 aluminum alloy and ER5087 welding wire (mass fraction, %)
GroupNameHeat input / J·mm-1Current / AVoltage / VGas flow / L·min-1Wire feed rate / m·min-1Welding speed / mm·s-1
1#P-GMAW Ⅰ27613019.020-257.57.5
CC-GMAW Ⅰ26514015.720-259.77.5
2#P-GMAW Ⅱ30714019.520-258.07.5
CC-GMAW Ⅱ31815016.920-259.97.5
Table 2  Welding process parameters
Fig.1  Sampling diagram (unit: mm)
Fig.2  Welding current and voltage waveforms (a) P-GMAW I, (b) P-GMAW II, (c) CC-GMAW I, (d) CC-GMAW II
Fig.3  Macro forming diagram (a, b) P-GMAW, (c, d) CC-GMAW
GroupNameWeld porosity / %Maximum pore diameter / mm
1#P-GMAW Ⅰ0-
CC-GMAW Ⅰ0.11.2
2#P-GMAW Ⅱ0.11.6
CC-GMAW Ⅱ0.20.9
Table 3  Weld porosity for different welding modes
Fig.4  Microstructure of weld section (a) P-GMAW I, (b) P-GMAW II, (c) CC-GMAW I, (d) CC-GMAW II
Fig.5  Relationship between microstructure and G and R
GroupNameAverage grain size / μmProportion of columnar area / %Proportion of equiaxed area / %
1#P-GMAW Ⅰ27643.856.2
CC-GMAW Ⅰ17017.882.2
2#P-GMAW Ⅱ32856.543.5
CC-GMAW Ⅱ24631.768.3
Table 4  Welded microstructure statistics
Fig.6  Welded and base metal microstructure (a) P-GMAW I microstructure, (b) Base metal, (c, d) P-GMAW I welded, (e, f) CC-GMAW I welded
Fig.7  EDS diagram of P-GMAW I welded microstructure
Fig.8  Hardness distribution of the joint section (a) P-GMAW I, (b) P-GMAW II, (c) CC-GMAW I, (d) CC-GMAW II
Fig.9  Stress-strain curves of welded joint and base metal
Fig.10  Fracture microstructures (a) P-GMAW I, (b) P-GMAW II, (c) CC-GMAW I, (d) CC-GMAW II, (e) base metal
Fig.11  Statistical figure of fine grain strengthening effect of weld and base metal
1 Wang H L, Zeng X H, Zhang X M, et al. Microstructure and properties of 5083 and 6061 aluminum alloy dissimilar stir friction welded joints [J]. Chin. J. Mater. Res., 2018, 32(6): 473
王洪亮, 曾祥浩, 张欣盟 等. 5083和6061铝合金异种搅拌摩擦焊接接头的组织和性能 [J]. 材料研究学报, 2018, 32(6): 473
doi: 10.11901/1005.3093.2017.634
2 Goswami R, Spanos G, Pao P S, et al. Precipitation behavior of the phase in Al-5083 [J]. Mater. Sci. Eng. A, 2010, 527(4-5): 1089
3 Kaibyshev R, Musin F, Lesuer D R, et al. Superplastic behavior of an Al-Mg alloy at elevated temperatures [J]. Mater. Sci. Eng. A, 2003, 342(1-2): 169
4 Umar M, Sathiya P. Influence of melting current pulse duration on microstructural features and mechanical properties of AA5083 alloy weldments [J]. Mater. Sci. Eng. A, 2019, (746): 746
5 Reddy G M, Gokhale A A, Rao K P. Optimisation of pulse frequency in pulsed current gas tungsten arc welding of aluminium-lithium alloy sheets [J]. Mater. Sci. Technol., 2014, 14(1): 61
6 Kumar A, Sundarrajan S. Effect of welding parameters on mechanical properties and optimization of pulsed TIG welding of Al-Mg-Si alloy [J]. Inter. J. Adv. Manufact. Technol., 2009, 42(1-2): 118
7 Kuang X, Qi B, Zheng H. Effect of pulse mode and frequency on microstructure and properties of 2219 aluminum alloy by ultrahigh-frequency pulse Metal-Inert Gas Welding [J]. J. Mater. Res. Technol., 2022, 20: 3391
8 Wang Y, Cong B, Qi B, et al. Influence of low-pulsed frequency on arc profile and weld formation characteristics in double-pulsed VPTIG welding of aluminium alloys [J]. J. Manufact. Pro., 2020, 58: 1211
9 Zhu X, Yang X Y, Lu X, et al. Effect of arc pulse on the microstructure and properties of 6005A-T6 aluminum alloy CMT-P welded joints [J]. Mater. Rep., 2024, 38(23): 23090035
朱 轩, 杨晓益, 陆 鑫 等. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响 [J]. 材料导报, 2024, 38(23): 23090035
10 Li G N. Research on droplet transition behavior and weld formation of aluminum alloy GMAW welding [D]. Taiyuan: North China University, 2024
黎国宁. 铝合金GMAW焊接熔滴过渡行为及焊缝成形研究 [D]. 太原: 中北大学, 2024
11 Yang M, Yang Z, Cong B, et al. How ultra high frequency of pulsed gas tungsten arc welding affects weld porosity of Ti-6Al-4V alloy [J]. Inter. J. Adv. Manufact. Technol., 2015, 76: 955
12 Li C, Liu K, Chen X G. Improvement of elevated-temperature strength and recrystallization resistance via Mn-containing dispersoid strengthening in Al-Mg-Si 6082 alloys [J]. J. Mater. Sci. Technol., 2020, 39: 135
doi: 10.1016/j.jmst.2019.08.027
13 Li H, Zou J, Yao J, et al. The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy [J]. J. Alloy. Compd., 2017, 727: 531
14 Choudhury S D, Khan W N, Lyu Z, et al. Failure analysis of blowholes in welded boiler water walls [J]. Eng. Fail. Analys., 2023, 153: 107560
15 Nie J J, Gong Z X, Sun J L, et al. Microstructure and properties of 2195-2219 heterogeneous aluminum alloy welded joints [J]. Chin. J. Mater. Res., 2023, 37(2): 152
聂敬敬, 龚政轩, 孙京丽 等. 2195-2219异种铝合金焊接接头的微观组织和性能 [J]. 材料研究学报, 2023, 37(2): 152
doi: 10.11901/1005.3093.2022.057
16 Hansen N. Hall-Petch relation and boundary strengthening [J]. Scr. Mater., 2024, 51: 801
[1] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
[2] XU Congmin, SUN Shuwen, ZHU Wensheng, CHEN Zhiqiang, LI Chengchen. Influence of Ternary Compound Biocides on Corrosion Behavior of P110 Steel[J]. 材料研究学报, 2025, 39(4): 281-288.
[3] LI Honglei, LIU Chuang, LU Zhengwei, CHU Tianyi, CHEN Yuqiu, JIANG Sumeng, GONG Jun, PEI Zhiliang. Preparation and Performance of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, 39(4): 314-320.
[4] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[5] HU Ming, ZHANG Xinquan, LI Weiqiang, YANG Xiaokang, HUANG Jinhu, LEI Xiaofei, QIU Jianke, DONG Limin. Effect of Fe- and Cu-content on Microstructure and Mechanical Properties of TC10 Ti-alloy Bars[J]. 材料研究学报, 2025, 39(3): 217-224.
[6] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
[7] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[8] HU Pengqin, WANG Dong, LU Yuzhang, ZHANG Jian. Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2025, 39(3): 161-171.
[9] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[10] XU Congmin, LI Xueli, FU Anqing, SUN Shuwen, CHEN Zhiqiang, LI Chengchen. Effect of Compound Bactericidal Corrosion Inhibitor on Corrosion Behavior of N80 Steel at Different Temperatures[J]. 材料研究学报, 2025, 39(2): 145-152.
[11] WU Xiaoqi, WAN Hongjiang, MING Hongliang, WANG Jianqiu, KE Wei, HAN En-Hou. Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test[J]. 材料研究学报, 2025, 39(2): 92-102.
[12] MA Xiuge, WU Qinghui, PANG Jianchao, LIU Zengqian, LI Shouxin, LUO Kailun, ZHANG Zhefeng. Effect of Grain Boundary Misorientation on Tensile Properties of Bi-crystal Superalloy at Ambient and High Temperatures[J]. 材料研究学报, 2025, 39(2): 81-91.
[13] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[14] WANG Na, LI Wenbin, PANG Jianchao, CHEN Lijia, GAO Chong, ZOU Chenglu, ZHANG Hui, LI Shouxin, ZHANG Zhefeng. Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures[J]. 材料研究学报, 2025, 39(1): 1-10.
[15] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
No Suggested Reading articles found!