Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (4): 314-320    DOI: 10.11901/1005.3093.2024.314
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Performance of Ni-Al2O3/Diamond Composite Coating
LI Honglei1, LIU Chuang1, LU Zhengwei2, CHU Tianyi1, CHEN Yuqiu1, JIANG Sumeng1, GONG Jun1, PEI Zhiliang1()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China
Cite this article: 

LI Honglei, LIU Chuang, LU Zhengwei, CHU Tianyi, CHEN Yuqiu, JIANG Sumeng, GONG Jun, PEI Zhiliang. Preparation and Performance of Ni-Al2O3/Diamond Composite Coating. Chinese Journal of Materials Research, 2025, 39(4): 314-320.

Download:  HTML  PDF(11881KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-nano-Al2O3/micro-Diamond composite coating was prepared by electrodeposition on 9310 carburizing steel. The morphology, microstructure, composition of the composite coating were characterized by XRD and SEM, while its bond strength, tensile properties and wear resistance were also tested. Ni-Al2O3/Diamond composite coating is dense and continuous. The average bonding strength between the coating and the substrate is higher than 55.2 MPa. The wear rate of the composite coating is reduced by 43.8% compared with the 9310 carburizing steel and reduced by 76.4% compared with the Ni-Al2O3 composite coating. Wear mechanism of the composite coating was abrasive wear and adhesive wear by analyzing wear tracks.

Key words:  surface and interface in the materials      electrodeposition      Al2O3      diamond      microstructure      friction and wear     
Received:  24 July 2024     
ZTFLH:  TG174.4  
Corresponding Authors:  PEI Zhiliang, Tel: (024)23971448, E-mail: zlpei@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.314     OR     https://www.cjmr.org/EN/Y2025/V39/I4/314

Fig.1  Schematic (a) and morphologies (b) of tensile specimen
Fig.2  Surface morphologies (a, b), cross-section morphologies (c, d) of Ni-Al2O3/Diamond composite coating, (a, c) Ni-Al2O3, (b, d) Ni-Al2O3/Diamond
Fig.3  XRD patterns of coatings of Ni-Al2O3 composite coating and Ni-Al2O3/Diamond composite coating
Fig.4  Tensile fracture morphology and bonding strength of coatings
Fig.5  Tensile properties test curve (a) uncarburized matrix, (b) carburizing substrate
SamplesRm / MPaRp0.2 / MPaA / %Z / %
9310 steel59045426.278
9310 carburizing steel1760///
Coating1765///
Table 1  Tensile performance of 9310 steel and 9310 carburizing steel
Fig.6  Tensile fracture morphology of carburizing sample
Fig.7  Friction coefficient vs time curves (a) and cross-section morphologies of wear tracks for substrate and coatings (b)
Fig.8  Low (a, b, c) and high (d, e, f) magnified worn surface morphologies of the substrate (a, d), Ni-Al2O3 coating (b, e) and Ni-Al2O3 /Diamond coating (c, f)
Fig.9  Worn surface of Al2O3 balls (a) Substrate, (b) Ni-Al2O3 coating, (c) Ni-Al2O3 /Diamond coating
1 Peng C, Xiao Y Z, Wang Y Z, et al. Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear [J]. Opt. Laser. Technol., 2017, 94: 15
2 Huan Y, Pei T W, Li H S, et al. Rolling-sliding contact fatigue failure and associated evolutions of microstructure, crystallographic orientation and residual stress of AISI 9310 gear steel [J]. Int. J. Fatigue, 2023, 170: 107511
3 Ren S Y, Wang C Q, Zhang W, et al. The heat treatment effect on the surface characteristics of 9310 steel gear [J]. IOP Confere. Seri.: Mater. Sci. Eng., 2020, 770: 012111
4 Zhang Y S, Sun H X, Liu B X, et al. Surface crack analysis of the steering shaft gear after carburizing and quenching [J]. Eng. Fail. Anal., 2022, 141: 106680
5 Wu J Z, Wei P T, Liu H J, et al. Evaluation of pre-shot peening on improvement of carburizing heat treatment of AISI 9310 gear steel [J]. J. Mater. Res. Technol., 2022, 182784: 2796
6 Mo J L, Zhu M H. Tribological properties of CrN coatings prepared by physical vapor deposition [J]. J. Southwest Jiaotong Univ., 2008, (2): 280
莫继良, 朱旻昊. 物理气相沉积法制备的CrN涂层的摩擦学性能 [J]. 西南交通大学学报, 2008, (2): 280
7 Yu X, Jing Z B, Xian G. Impact resistance and wear resistance of nitride coatings on bearing steel by arc ion plating [J]. Mater. for Mechan. Eng., 2024, 48(5): 67
于 翔, 敬正彪, 鲜 广. 轴承钢表面电弧离子镀氮化物涂层的抗冲击性能和耐磨性能 [J]. 机械工程材料, 2024, 48(5): 67
8 Shen M L, Zhao L H, He W P, et al. Corrosion and cracking behavior of high strength steel covered with high-velocity oxygen-fuel spraying WC coating in marine environment [J]. J. Mater. Eng., 2024, 52(2): 207
doi: 10.11868/j.issn.1001-4381.2023.000052
沈明禄, 赵连红, 何卫平 等. 起落架用高速火焰喷涂WC涂层覆盖高强钢海水环境腐蚀与开裂行为 [J]. 材料工程, 2024, 52(2): 207
doi: 10.11868/j.issn.1001-4381.2023.000052
9 Zhang Y X, Zheng L T, Wu J W, et al. Study on Properties of Ni-P-Al2O3 composite coating with Al2O3 content [J]. Inner Mongolia Petrochem. Indus., 2022, 48(12): 9
张迎新, 郑罗涛, 吴佳伟 等. Al2O3含量对Ni-P-Al2O3复合涂层性能的研究 [J]. 内蒙古石油化工, 2022, 48(12): 9
10 Beltowska-lehman E, Indyka P, Bigos A, et al. Electrodeposition of nanocrystalline Ni-W coatings strengthened by ultra fine alumina particles [J]. Surf. Coat. Technol., 2012, 211: 62
11 Hou K, Chen Y. Preparation and wear resistance of pulse electrodeposited Ni-W/Al2O3 composite coatings [J]. Appl. Surf. Sci., 2011, 257: 6340
12 Allahyarzadeh M, Aliofkhazraei M, Rouhaghdam A S, et al. Electrodeposition of multilayer Ni-W and Ni-W-alumina nanocomposite coatings [J]. Surf. Eng., 2017, 33: 327
13 Mirzamohammadi S, Aliov M K, Aghdam A S R, et al. Tribological properties of tertiary Al2O3/CNT/nano Diamond pulse delec-trodeposited Ni-W, nanocomposite [J]. Mater. Sci. Technol., 2011, 27: 546
14 Feng Q Y. Research on preparation of Ni-Al2O3 nanocomposite coatings and its properties [D]. Dalian: Dalian University of Technology, 2008
冯秋元. Ni-Al2O3纳米复合涂层制备及性能研究 [D]. 大连: 大连理工大学, 2008
15 Hou K, Sheu H, Ger M. Preparation and wear resistance of electrodeposited Ni-W/Diamond co-mposite coatings. [J]. Appl. Surf. Sci., 2014, 308: 372
16 Zhao Y W, Huang W, Tian H Y, et al. Research on the Ni-diamond composite coating by electrophoretic-electrochemical deposition and It's Wear Resistance [J]. Surf. Technol., 2013, 42(2): 77
赵运伟, 黄 巍, 田海燕 等. 电泳-电镀Ni-金刚石复合涂层及其耐磨性能研究 [J]. 表面技术, 2013, 42(2): 77
17 Sangeetha S, Kalaignan G P. Tribological and electrochemical corrosion behavior of Ni-W/BN(hexagonal) nano-composite coatings [J]. Ceram. Int., 2015, 41: 10415
18 Li H, He Y, He T, et al. Ni-W/BN(h) electrodeposited nanocomposite coating with functionally graded microstructure [J]. J. Alloy. Compd., 2017, 704: 32
19 Abu-Oqail A, Wagih A, Fathy A, et al. Effect of high energy ball milling on strengthening of Cu-ZrO2 nanocomposites [J]. Ceram. Int., 2019, (5): 139500043
20 Melaibari A, Fathy A, Mansouri M, et al. Experimental and numerical investigation on strengthening mechanisms of nanostructured Al-SiC composites [J]. J. Alloy. Compd., 2018, 7741123
21 Tjong S C, Lau K C. Tribological behaviour of SiC particle-reinforced copper matrix composites [J]. Mater. Lett., 2000, 43(5/6):274
22 Fan R X, Lai L Y, Li Y G. Microstructure Preparation and Hardness test of electrodeposited nickel/Diamond composite coatings [J]. Micronanoelect. Technol., 2021, 58(11): 965
范若欣, 赖丽燕, 李以贵. 电镀镍/金刚石复合涂层微结构制备及硬度测试 [J]. 微纳电子技术, 2021, 58(11): 965
23 Wang H M, Xu B S, Ma S N, et al. Preparation and Micro Mechanical Properties of Nano-Al2O3 Particles Reinforced Ni Matrix Composite Coatings [J]. Trans. Mater. Heat Treat., 2005, (1): 81
王红美, 徐滨士, 马世宁 等. 纳米Al2O3颗粒增强镍基复合涂层的制备及微观力学性能 [J]. 材料热处理学报, 2005, (1): 81
24 Jiang G F, Zhang H Y, Fu Y D, et al. Study on process parameters and properties of pulse electr-odeposited Ni-Al2O3 composite coating [J]. Electroplat. Finish., 2021, 40(14): 1057
姜广粉, 张海云, 傅彦迪 等. 脉冲电镀Ni-Al2O3复合涂层的工艺参数及性能研究 [J]. 电镀与涂饰, 2021, 40(14): 1057
25 Rasooli A, Safavi M S, Babaei F, Ansarian A. Electrodeposited Ni-Fe-Cr2O3 nanocomposite coatings: A survey of influences of Cr2O3 nanoparticles loadings in the electrolyte [J]. J. Alloy. Compd., 2020, 822: 153725
26 Eslami M, Saghafian H, Golestani-fard F, et al. Effect of electrodeposition conditions on the properties of Cu-Si3N4 composite coatings [J]. Appl. Surf. Sci., 2014, 300: 129
27 Ogihara H, Safuan M, Saji T. Effect of electrodeposition conditions on hardness of Ni-B/diamond composite films [J]. Surf. Coat. Technol., 2012, 212: 180
28 Mehr S M, Akbari A, Damerchi E. Electrodeposited Ni-B/SiC micro- and nano-composite coatings: A comparative study [J]. J. Alloy. Compd., 2018: 782477
29 Zhang J, Gao M H, Luan S J, et al. Effect of feedstock powders on microstructure and properties of CoNiCrAlY coatings [J]. Chin. J. Mater. Res., 2024, 38(5): 347
doi: 10.11901/1005.3093.2023.340
张 甲, 高明浩, 栾胜家 等. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响 [J]. 材料研究学报, 2024, 38(5): 347
30 Barzegar M, Allahkaram S R, Naderi R, et al. Effect of phosphorous content and heat treatment on the structure, hardness and wear behavior of Co-P coatings [J]. Wear, 2019, 422: 35
doi: 10.1016/j.wear.2018.12.097
31 Fang Y L, Wang H M. Sliding wear properties of laser melt deposited Cr13Ni5Si2/γ -Ni base Alloy [J]. Acta Metall. Sin., 2006, 42: 181
方艳丽, 王华明. 激光熔化沉积Cr13Ni5Si2/γ-Ni基合金的耐磨性能 [J]. 金属学报, 2006, 42: 181
[1] PENG Yihe, OU Baoli, PENG Yongjie, WEN Mieyi, CHENG Tianyu, CHEN Diming. Preparation and Properties of Cerium Dioxide-Graphene Oxide Hybrid Materials (CeO2-GO)/Epoxy Resin Anti-corrosive Composite Coating[J]. 材料研究学报, 2025, 39(4): 259-271.
[2] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[3] LI Qingpeng, LIU Jiaxing, AN Xiaoyun, LI Yongzhi, GAO Meng, SUN Hongtao, WANG Na. Preparation and Properties of High Performance Silane Conversion Film on Electroplated Zinc Surface[J]. 材料研究学报, 2025, 39(4): 296-304.
[4] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[5] WANG Jing, HE Wenzheng, YANG Shuang, GENG Wen, REN Rong, XIONG Xuhai. Effect of Argon Plasma Treatment on Interface Performance of Aramid Fiber Ⅲ / Epoxy Composites[J]. 材料研究学报, 2025, 39(3): 185-197.
[6] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[7] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[8] HU Ming, ZHANG Xinquan, LI Weiqiang, YANG Xiaokang, HUANG Jinhu, LEI Xiaofei, QIU Jianke, DONG Limin. Effect of Fe- and Cu-content on Microstructure and Mechanical Properties of TC10 Ti-alloy Bars[J]. 材料研究学报, 2025, 39(3): 217-224.
[9] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
[10] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[11] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
[12] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[13] WANG Na, LI Wenbin, PANG Jianchao, CHEN Lijia, GAO Chong, ZOU Chenglu, ZHANG Hui, LI Shouxin, ZHANG Zhefeng. Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures[J]. 材料研究学报, 2025, 39(1): 1-10.
[14] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[15] HUANG Di, NIU Yunsong, LI Shuai, DONG Zhihong, BAO Zebin, ZHU Shenglong. Thermal Cycling and Flame Thermal Shocking Failure Mechanism of Tetragonal Yttria-stabilized Zirconia TBCs Prepared on High Temperature Alloys by Suspension Plasma Spraying[J]. 材料研究学报, 2024, 38(9): 691-700.
No Suggested Reading articles found!