Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (3): 161-171    DOI: 10.11901/1005.3093.2024.055
ARTICLES Current Issue | Archive | Adv Search |
Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy
HU Pengqin1,2, WANG Dong2(), LU Yuzhang2, ZHANG Jian2()
1.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

HU Pengqin, WANG Dong, LU Yuzhang, ZHANG Jian. Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy. Chinese Journal of Materials Research, 2025, 39(3): 161-171.

Download:  HTML  PDF(5633KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of heating history, such as those related with standard heat treatment, hot isostatic pressing (HIP), coating and brazing thermal processes, on the microstructure and creep properties (at 760 oC/790 MPa and 980 oC/248 MPa) of a first generation nickel-based single crystal superalloy DD413 was investigated. The results show that the microstructure and creep behavior of nickel-based single crystal superalloy DD413 are significantly affected by different thermal processes. Compared with the standard heat treatment, HIP reduces the size of γʹ and γ channel, but increases the volume fraction of γʹ phase. Meanwhile, micro-pores in the alloy are effectively eliminated by HIP, which improves the creep life. The coating thermal process preparation can coarsen the γʹ and γ channel, reduce the volume fraction of γʹ phase, and delay the rafting kinetics of γʹ phase at high temperature, therewith, reduce the creep property of the alloy. The brazing thermal process not only causes the coarsening of γ′ phase but also destroys the cubic degree of γ′ phase, leading to significant reduction in creep property of the alloy.

Key words:  metallic materials      single crystal superalloy      hot isostatic pressing      coating thermal process      brazing thermal process      creep behavior     
Received:  24 January 2024     
ZTFLH:  TG132.32  
Fund: National Key Research and Development Program of China(2021YFA1600603);National Natural Science Foundation of China(52071219);National Science and Technology Major Project(J2019-IV-0006-0074);National Science and Technology Major Project(J2019-VI-0010-0124);Science Center for Gas Turbine Project(P2021-AB-IV-001-002);Science Center for Gas Turbine Project(P2022-C-IV-001-001)
Corresponding Authors:  ZHANG Jian, Tel: (024)23971196, E-mail: jianzhang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.055     OR     https://www.cjmr.org/EN/Y2025/V39/I3/161

StateHeat treatment process

Standard heat treatment

HIP

Coating thermal process

Brazing thermal process

1250 oC/4 h/AC + 1080 oC/4 h/AC

1250 oC/4 h/AC + 1220 oC/4 h/160 MPa + 1250 oC/2 h/AC + 1080 oC/4 h/AC

1250 oC/4 h/AC + 1070 oC/6 h/FC + 1080 oC/4 h/AC

1250 oC/4 h/AC+1220 oC/0.5 h/FC+1080 oC/4 h/AC

Table 1  Heat treatment processes used in this work
760 oC / 790 MPa980 oC / 248 MPa

Primary stage

Steady stage

t = 2 h

t = 15 h

t = 2 h

t = 10 h

Table 2  Summary of interruption points at primary and steady stages
Fig.1  Microstructure of DD413 after different thermal processes (a, c, e, g) dendrite region; (b, d, f, h) interdendrite region; (a, b) standard heat treatment; (c, d) HIP; (e, f) coating thermal process; (g, h) brazing thermal process
StateVolume fraction of γʹ / %Size of γʹ / μmSize of γ channel / μm

Dendrite core

Standard heat treatment

HIP

Coating thermal process

50.6

52.1

44.3

0.354

0.314

0.374

0.057

0.051

0.083

Standard heat treatment53.10.3670.064
Interdendritic regionHIP53.60.3320.057
Coating thermal process46.20.3850.096
Table 3  Volume fraction and size of γʹ and γ channel after different heat treatment
Fig.2  Creep curves of DD413 after different thermal processes (a, c) 760 ℃/790 MPa; (b, d) 980 ℃/248 MPa
Fig.3  γ/γ′ microstructure evolution in the longitudinal sections of creep specimens treated by different thermal processes. Tests interrupted at different stages under condition of 760 ℃/790 MPa (a~c) HIP; (d~f) coating thermal process; (g~i) brazing thermal process; (a, d, g) 2 h; (b, e, h) 15 h; (c, f, i) fracture sample
Fig.4  γ/γ′ microstructure evolution in the longitudinal sections of creep specimens treated by different thermal processes. Tests interrupted at different stages under condition of 980 oC/248 MPa (a, b, c) HIP; (d, e, f) coating thermal process; (g, h, i) brazing thermal process; (a, d, g) 2 h; (b, e, h) 10 h; (c, f, i) fracture sample
Fig.5  Fractograph of specimens treated by different thermal processes after creep under condition of 760 oC/790 MPa (a, b) HIP; (c, d) coating thermal process; (e, f) brazing thermal process; (b, d, f) magnified morphologies in box area in Fig.5a, c, e
Fig.6  Fractograph of specimens treated by different thermal processes after creep under condition of 980 oC/248 MPa (a, b) HIP; (c, d) coating thermal process; (e, f) brazing thermal process; (b, d, f) magnified morphology in box area in Fig.6a, c, e
Fig.7  Longitudinal sections of specimens treated by different thermal processes after creep under condition of 760 oC/790 MPa (a, b) HIP; (c, d) coating thermal process; (e, f) brazing thermal process
Fig.8  Longitudinal sections of specimens treated by different thermal processes after creep under condition of 980 oC/248 MPa (a, b) HIP; (c, d) coating thermal process; (e, f) brazing thermal process
1 Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties [J]. J. Propul. Power, 2006, 22(2): 361
2 Zhang J, Wang L, Xie G, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2023, 59(9): 1109
doi: 10.11900/0412.1961.2023.00140
张 健, 王 莉, 谢 光 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2023, 59(9): 1109
3 Caron P, Henderson P J, Khan T, et al. On the effects of heat treatments on the creep behaviour of a single crystal superalloy [J]. Scr. Metall., 1986, 20(6): 875
4 MacKay R A, Ebert L J. The development of γ-γ′ lamellar structures in a nickel-base superalloy during elevated temperature mechanical testing [J]. Metall. Trans., 1985, 16A: 1969
5 Liu W W, Liu S Z, Li Y, et al. Effect of long term aging on microstructure and mechanical properties of DD6 single crystal superalloy [J]. J. Mater. Eng., 2021, 49(6): 94
刘维维, 刘世忠, 李 影 等. 长期时效对DD6单晶高温合金组织和力学性能的影响 [J]. 材料工程, 2021, 49(6): 94
doi: 10.11868/j.issn.1001-4381.2020.001125
6 Yang Y F, Jiang C Y, Bao Z B, et al. Effect of aluminisation characteristics on the microstructure of single phase β-(Ni, Pt)Al coating and the isothermal oxidation behaviour [J]. Corros. Sci., 2016, 106: 43
7 Yu C T, Liu H, Ullah A, et al. High-temperature performance of (Ni, Pt)Al coatings on second-generation Ni-base single-crystal superalloy at 1100 oC: Effect of excess S impurities [J]. Corros. Sci., 2019, 159: 108115
8 Guo H M, Zhao Y S, Zheng S, et al. Effect of hot-isostatic pressing on microstructure and mechanical properties of second generation single crystal superalloy DD6 [J]. J. Mater. Eng., 2016, 44(10): 60
郭会明, 赵云松, 郑 帅 等. 热等静压对第二代单晶高温合金DD6显微组织和力学性能的影响 [J]. 材料工程, 2016, 44(10): 60
doi: 10.11868/j.issn.1001-4381.2016.10.009
9 Chang J C, Choi C, Kim J C, et al. Development of microstructure and mechanical properties of a Ni-base single-crystal superalloy by hot-isostatic pressing [J]. J. Mater. Eng. Perform., 2003, 12(4): 420
10 Mujica Roncery L, Lopez-Galilea I, Ruttert B, et al. Influence of temperature, pressure, and cooling rate during hot isostatic pressing on the microstructure of an SX Ni-base superalloy [J]. Mater. Des., 2016, 97: 544
11 Sun Y, Zhao X, Su J, et al. Microstructure and properties of nickel-based single crystal superalloy brazed joints [J]. Trans. China Weld. Inst., 2020, 41(7): 32
孙 元, 赵 旭, 苏 瑾 等. 镍基单晶高温合金钎焊接头的微观组织与性能 [J]. 焊接学报, 2020, 41(7): 32
12 Sun Y, Liu J D, Hou X Y, et al. Microstructure evolution and interfacial formation mechanism of wide gap brazing of DD5 single crystal superalloy [J]. Acta Metall. Sin., 2016, 52(7): 875
doi: 10.11900/0412.1961.2015.00622
孙 元, 刘纪德, 侯星宇 等. DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制 [J]. 金属学报, 2016, 52(7): 875
13 Reed R C, Cox D C, Rae C M F. Damage accumulation during creep deformation of a single crystal superalloy at 1150 oC [J]. Mater. Sci. Eng., 2007, 448A: 88
14 Han M, Luo Y S. Effects of HIP on microstructures and properties of DD3 single crystal superalloys [J]. J. Mater. Eng., 2008, 36(8): 40
韩 梅, 骆宇时. 热等静压对DD3单晶高温合金组织与性能的影响 [J]. 材料工程, 2008, 36(8): 40
15 He S L, Zhao Y S, Lu F, et al. Effects of hot isostatic pressure on microdefects and stress rupture life of second-generation nickel-based single crystal superalloy in as-cast and as-solid-solution states [J]. Acta Metall. Sin., 2020, 56(9): 1195
doi: 10.11900/0412.1961.2020.00020
和思亮, 赵云松, 鲁 凡 等. 热静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响 [J]. 金属学报, 2020, 56(9): 1195
doi: 10.11900/0412.1961.2020.00020
16 Li W W, Chen B, Xiong H P, et al. Microstructure and mechanical property of the second-generation single-crystal superalloy DD6 joint [J]. Acta Metall. Sin., 2021, 57(8): 959
李文文, 陈 波, 熊华平 等. 第二代单晶高温合金DD6高性能钎焊接头的组织及力学性能 [J]. 金属学报, 2021, 57(8): 959
doi: 10.11900/0412.1961.2020.00319
17 Neumeier S, Dinkel M, Pyczak F, et al. Nanoindentation and XRD investigations of single crystalline Ni-Ge brazed nickel-base superalloys PWA 1483 and René N5 [J]. Mater. Sci. Eng., 2011, 528A: 815
18 Feng H L, Chen B, Ren H S, et al. Effect of brazing thermal cycles on microstructure of single crystal alloy DD6 [J]. J. Aeronaut. Mater., 2021, 41(6): 51
冯洪亮, 陈 波, 任海水 等. 钎焊热循环对DD6单晶合金微观组织的影响 [J]. 航空材料学报, 2021, 41(6): 51
doi: 10.11868/j.issn.1005-5053.2021.000067
19 Ardell A J, Ozolins V. Trans-interface diffusion-controlled coarsening [J]. Nat. Mater., 2005, 4: 309
pmid: 15778716
20 Müller L, Glatzel U, Feller-Kniepmeier M. Modelling thermal misfit stresses in nickel-base superalloys containing high volume fraction of γʹ prime phase [J]. Acta Metall. Mater., 1992, 40(6): 1321
21 Xu J C, Zhao X B, Li W Q, et al. Aging process design based on the morphological evolution of γʹ precipitates in a 4th generation nickel-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2023, 147: 176
22 Tiley J, Viswanathan G B, Srinivasan R, et al. Coarsening kinetics of γʹ precipitates in the commercial nickel base superalloy René 88 DT [J]. Acta Mater., 2009, 57: 2538
23 He Y F, Wang L, Wang D, et al. Effect of hot isostatic pressing on microstructure of a third-generation single crystal superalloy DD33 [J]. Chin. J. Mater. Res., 2022, 36(9): 649
doi: 10.11901/1005.3093.2021.490
何禹锋, 王 莉, 王 栋 等. 热等静压对第三代单晶高温合金DD33显微组织和持久性能的影响 [J]. 材料研究学报, 2022, 36(9): 649
doi: 10.11901/1005.3093.2021.490
24 Pollock T M, Argon A S. Creep resistance of CMSX-3 nickel base superalloy single crystals [J]. Acta Mater., 1992, 40(1): 1
25 Caron P. High γʹ solvus new generation nickel-based superalloys for single crystal turbine blade applications [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 737
26 Reed R C, Matan N, Cox D C, et al. Creep of CMSX-4 superalloy single crystals: effects of rafting at high temperature [J]. Acta Mater., 1999, 47(12): 3367
[1] . Influence of ternary compound biocides on the corrosion behavior of P110 steel under different oil-water ratio environments[J]. 材料研究学报, 2025, (4): 0-0.
[2] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[3] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[4] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[5] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
[6] XU Congmin, LI Xueli, FU Anqing, SUN Shuwen, CHEN Zhiqiang, LI Chengchen. Effect of Compound Bactericidal Corrosion Inhibitor on Corrosion Behavior of N80 Steel at Different Temperatures[J]. 材料研究学报, 2025, 39(2): 145-152.
[7] WU Xiaoqi, WAN Hongjiang, MING Hongliang, WANG Jianqiu, KE Wei, HAN En-Hou. Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test[J]. 材料研究学报, 2025, 39(2): 92-102.
[8] MA Xiuge, WU Qinghui, PANG Jianchao, LIU Zengqian, LI Shouxin, LUO Kailun, ZHANG Zhefeng. Effect of Grain Boundary Misorientation on Tensile Properties of Bi-crystal Superalloy at Ambient and High Temperatures[J]. 材料研究学报, 2025, 39(2): 81-91.
[9] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[10] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[11] XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. 材料研究学报, 2025, 39(1): 55-62.
[12] DENG Xiaolong, WANG Shanshan, DAI Xinxin, LIU Yi, HUANG Jinzhao. Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution[J]. 材料研究学报, 2025, 39(1): 71-80.
[13] WANG Na, LI Wenbin, PANG Jianchao, CHEN Lijia, GAO Chong, ZOU Chenglu, ZHANG Hui, LI Shouxin, ZHANG Zhefeng. Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures[J]. 材料研究学报, 2025, 39(1): 1-10.
[14] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[15] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
No Suggested Reading articles found!