Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (2): 92-102    DOI: 10.11901/1005.3093.2024.029
ARTICLES Current Issue | Archive | Adv Search |
Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test
WU Xiaoqi1,2, WAN Hongjiang2,3, MING Hongliang2,3(), WANG Jianqiu2,3, KE Wei2, HAN En-Hou4
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
4 Institute of Corrosion Science and Technology, Guangzhou 510530, China
Cite this article: 

WU Xiaoqi, WAN Hongjiang, MING Hongliang, WANG Jianqiu, KE Wei, HAN En-Hou. Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test. Chinese Journal of Materials Research, 2025, 39(2): 92-102.

Download:  HTML  PDF(34666KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, the effect of compression rate on the hydrogen embrittlement (HE) sensitivity of X65 pipeline steel was studied viain-situ small punch test (SPT). Compared with the samples exposed to 4 MPa nitrogen on one side, those exposed to 4 MPa hydrogen show significant HE sensitivity with features of obvious quasi-cleavage fracture as well as a significant decrease in small punch (SP) energy. When exposed to hydrogen, as the compression rate decreases, the HE sensitivity of samples increases significantly, while the SP energy value decreases accordingly. This indicates that within this range of compression rates, the HE sensitivity of X65 pipeline steel exhibits an upward trend with decreasing compression rate. At low compression rates, hydrogen diffusion can keep up with dislocation motion. Dislocations can carry hydrogen clusters along to the crack tip, thereby triggering significant hydrogen embrittlement phenomena. Additionally, based on the segmental compression test results of the load-displacement curves and the morphology analysis of the sample in each stage of the fracture process, the mechanism of hydrogen effect on the compression process of X65 pipeline steel by the applied stress was revealed.

Key words:  metallic materials      hydrogen embrittlement      in-situ small punch test      X65 pipeline steel      compression rate      fracture morphology      SP energy     
Received:  09 January 2024     
ZTFLH:  TG172.3+2  
Fund: National Key R & D Program of China(2021YFB4001601);Youth Innovation Promotion Association CAS(2022187)
Corresponding Authors:  MING Hongliang, Tel: (024)23998826, E-mail: hlming12s@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.029     OR     https://www.cjmr.org/EN/Y2025/V39/I2/92

CMnCuNiCrMoNbTiFe
0.041.230.150.150.250.060.040.01Bal.
Table 1  Chemical composition of X65 pipeline steel (mass fraction, %)
Fig.1  Sampling method and schematic diagram with dimensions of compressed specimen
Fig.2  Microstructure images of X65 pipeline steel in different directions (a) RD-ND plane; (b) RD-TD plane; (c) TD-ND plane (P—pearlite; F—ferrite)
Fig.3  Physical illustration of the fixture device (a); internal schematic diagram of the fixture (b) and physical illustration of the compression equipment (c)
Test conditionsTest parameters
Specimen dimension / mmϕ9 × 0.5

Ball diameter / mm

Gas environment

Gas pressure / MPa

Compression rate / mm·min-1

Test temperature

2.5

N2(99.999%), H2(99.999%)

4.0

1.0, 0.1, 0.01, 0.004

Room temperature

Table 2  Test conditions for in-situ small punch tests
Fig.4  Load-displacement curves under different compression rates in nitrogen environment at 4 MPa (a); load-displacement curves under different compression rates in hydrogen environment at 4 MPa (b); load-displacement curves under different gas environments and compression rates (c) and load-displacement curve partition map under a compression rate of 1 mm·min-1 in nitrogen environment at 4 MPa (d)
Fig.5  SP energy values under different gas environments and compression rates
Compression rate / mm·min-1Gas environmentp / MPaFm/ Nσm/ mmEsp/ J
1.0N241723.622.502.45
0.0041530.762.472.26
1.0H241572.682.101.76
0.11477.602.001.62
0.011294.531.921.36
0.004959.311.921.11
Table 3  Summary table of experimental results under different gas environments and compression rates
Fig.6  SEM images of fractured specimens under different conditions (a1~c1) 4 MPa nitrogen, compression rate of 1 mm·min-1; (a2~c2) 4 MPa hydrogen, compression rate of 1 mm·min-1; (a3~c3) 4 MPa hydrogen, compression rate of 0.1 mm·min-1; (a4~c4) 4 MPa hydrogen, compression rate of 0.01 mm·min-1; (a5~c5) 4 MPa hydrogen, compression rate of 0.004 mm·min-1
Fig.7  SEM images of specimen surface in compression stage Ⅰ in nitrogen environment (a) and hydrogen environment (b) at 4 MPa
Fig.8  SEM images of specimen surface in compression stage Ⅱ in nitrogen environment (a1~d1) and hydrogen environment (a2~d2) at 4 MPa
Fig.9  SEM images of specimen surface in compression stage Ⅲ in nitrogen environment (a1~d1) and hydrogen environment (a2~d2) at 4 MPa
Fig.10  SEM images of specimen surface in compression stage IV in nitrogen environment (a1~d1) and hydrogen environment (a2~d2) at 4 MPa
Fig.11  Cross-sectional diagram of specimen fracture under a compression rate of 1 mm·min-1 in nitrogen environment (a) and hydrogen environment (b) at 4 MPa
1 Amin M, Shah H H, Fareed A G, et al. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change [J]. Int. J. Hydrogen Energy, 2022, 47(77): 33112
2 Meng X Y, Chen M Y, Gu A L, et al. China's hydrogen development strategy in the context of double carbon targets [J]. Nat. Gas Ind., 2022, 9B(6): 521
3 Espegren K, Damman S, Pisciella P, et al. The role of hydrogen in the transition from a petroleum economy to a low-carbon society [J]. Int. J. Hydrogen Energy, 2021, 46(45): 23125
4 Jia G W, Lei M Y, Li M Y, et al. Hydrogen embrittlement in hydrogen-blended natural gas transportation systems: a review [J]. Int. J. Hydrogen Energy, 2023, 48: 32137
5 Palacios A, Cordova-Lizama A, Castro-Olivera P M, et al. Hydrogen production in Mexico: state of the art, future perspectives, challenges, and opportunities [J]. Int. J. Hydrogen Energy, 2022, 47(70): 30196
6 Erdener B C, Sergi B, Guerra O J, et al. A review of technical and regulatory limits for hydrogen blending in natural gas pipelines [J]. Int. J. Hydrogen Energy, 2023, 48(14): 5595
7 Louthan M R, Caskey G R, Donovan J A, et al. Hydrogen embrittlement of metals [J]. Mater. Sci. Eng., 1972, 10: 357
8 Ohaeri E, Eduok U, Szpunar J. Hydrogen related degradation in pipeline steel: a review [J]. Int. J. Hydrogen Energy, 2018, 43(31): 14584
9 Bueno A H S, Moreira E D, Gomes J A C P. Evaluation of stress corrosion cracking and hydrogen embrittlement in an API grade steel [J]. Eng. Failure Anal., 2014, 36: 423
10 Gao K W, Chu W Y. Investigation of environment fracture from dislocation point of view [J]. Chin. J. Mater. Res., 1999, 13(4): 337
高克玮, 褚武扬. 环断裂境的位错层次研究 [J]. 材料研究学报, 1999, 13(4): 337
11 Demir M E, Dincer I. Cost assessment and evaluation of various hydrogen delivery scenarios [J]. Int. J. Hydrogen Energy, 2018, 43(22): 10420
12 Du J W, Ming H L, Wang J Q, et al. Hydrogen embrittlement of 20# seamless steel in medium and low pressure gaseous hydrogen [J]. Mater. Lett., 2023, 334: 133734
13 Xu H, Xia X M, Hua L, et al. Evaluation of hydrogen embrittlement susceptibility of temper embrittled 2.25Cr–1Mo steel by SSRT method [J]. Eng. Failure Anal., 2012, 19: 43
14 Peral L B, Zafra A, Belzunce J, et al. Effects of hydrogen on the fracture toughness of CrMo and CrMoV steels quenched and tempered at different temperatures [J]. Int. J. Hydrogen Energy, 2019, 44(7): 3953
15 Birenis D, Ogawa Y, Matsunaga H, et al. Hydrogen-assisted crack propagation in α-iron during elasto-plastic fracture toughness tests [J]. Mater. Sci. Eng., 2019, 756A: 396
16 Singh D K, Singh Raman R K, Maiti S K, et al. Investigation of role of alloy microstructure in hydrogen-assisted fracture of AISI 4340 steel using circumferentially notched cylindrical specimens [J]. Mater. Sci. Eng., 2017, 698A: 191
17 Kyriakopoulou H P, Karmiris-Obratanski P, Tazedakis A S, et al. Investigation of hydrogen embrittlement susceptibility and fracture toughness drop after in situ hydrogen cathodic charging for an X65 pipeline steel [J]. Micromachines, 2020, 11(4): 430
18 Álvarez G, Zafra A, Rodríguez C, et al. SPT analysis of hydrogen embrittlement in CrMoV welds [J]. Theor. Appl. Fract. Mech., 2020, 110: 102813
19 García T E, Arroyo B, Rodríguez C, et al. Small punch test methodologies for the analysis of the hydrogen embrittlement of structural steels [J]. Theor. Appl. Fract. Mech., 2016, 86: 89
20 Shin H S, Custodio N A, Baek U B. Numerical analysis for characterizing hydrogen embrittlement behaviors induced in STS316L stainless steel using an in-situ small-punch test [J]. Theor. Appl. Fract. Mech., 2021, 116: 103139
21 Álvarez G, Zafra A, Belzunce F J, et al. Effect of internal hydrogen on the fatigue crack growth rate in the coarse-grain heat-affected zone of a CrMo steel [J]. Metals, 2022, 12(4): 673
22 Nguyen T T, Park J S, Nahm S H, et al. Evaluation of hydrogen related degradation of API X42 pipeline under hydrogen/natural gas mixture conditions using small punch test [J]. Theor. Appl. Fract. Mech., 2021, 113: 102961
23 de Almeida L F M, Oliveira S A G, Paes M T P, et al. Effect of test velocity on the tensile strength of high strength steels using the small punch test in a hydrogen environment [J]. Int. J. Pressure Vessels Piping, 2021, 194: 104552
24 Han Z L, Song Y, Liu Y L, et al. Coupling effect of hydrogen and strain rate on 2.25Cr1Mo0.25V steel deformed over wide strain rate ranges [J]. Int. J. Hydrogen Energy, 2023, 48(2): 798
25 Qi X L, Ma Z, Chen L, et al. Effect of hydrogen transportation by dislocations on hydrogen embrittlement of materials [J]. Mech. Eng., 2022, 44(3): 519
齐晓琳, 马 倬, 陈 林 等. 位错载氢运动对材料氢脆行为的影响 [J]. 力学与实践, 2022, 44(3): 519
26 Wada K, Shibata C, Enoki H, et al. Hydrogen-induced intergranular cracking of pure nickel under various strain rates and temperatures in gaseous hydrogen environment [J]. Mater. Sci. Eng., 2023, 873A: 145040
27 Zhu X F, Wu R G. Hydrogen embrittlement of 30CrMnSiA steel subjected to slow dynamic strain [J]. J. Wuhan Iron Steel Univ., 1989, 12(3): 44
祝向福, 吴忍畊. 30CrMnSiA钢的慢应变速率动载氢脆 [J]. 武汉钢铁学院学报, 1989, 12(3): 44
28 Bae K O, Shin H S, Baek U B. Quantitative evaluation of hydrogen embrittlement susceptibility in various steels for energy use using an in-situ small punch test [J]. Int. J. Hydrogen Energy, 2021, 46(38): 20107
29 Shin H S, Bae K O, Baek U B, et al. Establishment of an in-situ small punch test method for characterizing hydrogen embrittlement behaviors under hydrogen gas environments and new influencing factor [J]. Int. J. Hydrogen Energy, 2019, 44(41): 23472
30 Cabrini M, Lorenzi S, Marcassoli P, et al. Hydrogen embrittlement behavior of HSLA line pipe steel under cathodic protection [J]. Corros. Rev., 2011, 29: 261
31 Álvarez G, Arniella V, Belzunce F J, et al. Study of the influence of current density and displacement rate on hydrogen embrittlement using small punch tests [J]. Theor. Appl. Fract. Mech., 2023, 125: 103838
32 Kang I W, Pyun S I, Kim K T. The effects of dislocations on the trapping and transport of hydrogen in 3.3Ni-1.6Cr steel during plastic deformation [J]. Scr. Metall., 1989, 23(2): 223
33 Itoh G, Koyama K, Kanno M. Evidence for the transport of impurity hydrogen with gliding dislocations in aluminum [J]. Scr. Mater., 1996, 35(6): 695
34 Cottrell A H. Theory of dislocations [J]. Prog. Met. Phys., 1949, 1: 77
35 Zhang B T, Li S H, Li Y F, et al. Effect of stress triaxiality on hydrogen embrittlement susceptibility of quenched boron steel B1500HS [J]. Chin. J. Mater. Res., 2022, 36(10): 739
doi: 10.11901/1005.3093.2021.243
张渤涛, 李淑慧, 李永丰 等. 应力三轴度对淬火态硼钢氢脆敏感性的影响 [J]. 材料研究学报, 2022, 36(10): 739
doi: 10.11901/1005.3093.2021.243
[1] . Influence of ternary compound biocides on the corrosion behavior of P110 steel under different oil-water ratio environments[J]. 材料研究学报, 2025, (4): 0-0.
[2] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[3] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[4] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[5] HU Pengqin, WANG Dong, LU Yuzhang, ZHANG Jian. Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2025, 39(3): 161-171.
[6] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
[7] XU Congmin, LI Xueli, FU Anqing, SUN Shuwen, CHEN Zhiqiang, LI Chengchen. Effect of Compound Bactericidal Corrosion Inhibitor on Corrosion Behavior of N80 Steel at Different Temperatures[J]. 材料研究学报, 2025, 39(2): 145-152.
[8] MA Xiuge, WU Qinghui, PANG Jianchao, LIU Zengqian, LI Shouxin, LUO Kailun, ZHANG Zhefeng. Effect of Grain Boundary Misorientation on Tensile Properties of Bi-crystal Superalloy at Ambient and High Temperatures[J]. 材料研究学报, 2025, 39(2): 81-91.
[9] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[10] XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. 材料研究学报, 2025, 39(1): 55-62.
[11] DENG Xiaolong, WANG Shanshan, DAI Xinxin, LIU Yi, HUANG Jinzhao. Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution[J]. 材料研究学报, 2025, 39(1): 71-80.
[12] WANG Na, LI Wenbin, PANG Jianchao, CHEN Lijia, GAO Chong, ZOU Chenglu, ZHANG Hui, LI Shouxin, ZHANG Zhefeng. Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures[J]. 材料研究学报, 2025, 39(1): 1-10.
[13] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[14] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[15] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
No Suggested Reading articles found!