Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (12): 918-926    DOI: 10.11901/1005.3093.2025.039
ARTICLES Current Issue | Archive | Adv Search |
Effect of Temperature on Reduction Behavior of Iron Ore Pellets with Hydrogen
BAI Liwei1,2, LIU Bingnan3,4, TONG Kehui5, ZHANG Xue2()
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.State Key Laboratory of Metallic Materials for Marine Equipment and Applications, Anshan 114009, China
4.ANSTEEL Iron & Steel Research Institute, Anshan 114009, China
5.ANSTEEL Engineering Technology Corporation Limited, Anshan 114021, China
Cite this article: 

BAI Liwei, LIU Bingnan, TONG Kehui, ZHANG Xue. Effect of Temperature on Reduction Behavior of Iron Ore Pellets with Hydrogen. Chinese Journal of Materials Research, 2025, 39(12): 918-926.

Download:  HTML  PDF(20726KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Although the direct reduction of iron ore with hydrogen is regared as an important technological approach for the steel industry to achieve low-carbon development, it shows great potential in reducing energy consumption and enhancing efficiency. However, its application in industry is limited by certain deficiencies in its process theory in the presence. The structural evolution of iron ore pellets during the hydrogen metallurgy process can be changed by adjusting process parameters such as ironmaking temperature, which will impact the reduction behavior as a whole. To uncover the microscopic mechanisms related with the effect of temperature on the process of direct reduction iron-making, therefore, the pure hydrogen reduction of iron ore pellets at 600 oC to 900 oC was examined in terms of the reduction thermodynamics and microstructural evolution of pellets. The findings reveal that, thermodynamically, the Fe2O3→Fe3O4 reaction stage required substantially lower demand for the diffusion to of the reducing agent H2 and the diffusion away of the reaction product H2O in contrast to the Fe3O4→FeO and FeO→Fe reaction stages. Increasing the temperature can improve the overall reduction degree of the pellets by strengthening the thermodynamic driving force for the Fe3O4→FeO and FeO→Fe stages. The number and size of pores in the pellets increase with temperature, which improves the diffusion driving force and shortens the diffusion channel for the reduction reaction. The nucleation and growth of Fe exhibit distinct characteristics as the temperature increases from 800 oC to 900 oC, but the reduction efficiency shows only a slight enhancement. This work is important for optimizing the process of hydrogen direct reduction of iron ore pellets, from a theoretical and practical standpoint.

Key words:  other disciplines of the materials science      hydrogen-based direct reduction      pelletized ore      microstructure      porosity     
Received:  16 January 2025     
ZTFLH:  TF554  
Fund: Joint Funds for Regional Innovation Development of National Natural Science Foundation of China(U23A20608)
Corresponding Authors:  ZHANG Xue, Tel: 15140233321, E-mail: xuezhang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2025.039     OR     https://www.cjmr.org/EN/Y2025/V39/I12/918

Fig.1  Diagram of experimental setup for pellet ore reduction
Fig.2  Critical ratio of water partial pressure to hydrogen partial pressure for the reduction reaction of different iron oxides (a) and the reduction degree of iron ore pellet after 10 min reaction in hydrogen (b) at different temperatures
Fig.3  Cross-sectional morphologies of pellet ore reduced in hydrogen atmosphere at 600 oC for 10 min (a) center region, (b) edge region
Fig.4  Cross-sectional morphologies of pellet ore reduced in hydrogen atmosphere at 700 oC for 10 min (a) center region, (b) edge region
Fig.5  Cross-sectional morphologies and EDS results of pellet ore reduced in hydrogen atmosphere at 800 oC for 10 min (a) center region, (b-c) edge region, (d) EDS analytics
Fig.6  Cross-sectional morphologies and EDS results of pellet ore reduced in hydrogen atmosphere at 900 oC for 10 min (a) center region, (b-c) edge region, (d) EDS analytics
Fig.7  EBSD plot of pellet ore reduced in hydrogen atmosphere at 900 oC for 10 min (a) microscopic morphology, (b) physical phase distribution, (c) IPF map
[1] Khani M, Ebrahim H A, Habibzadeh S. A comprehensive random pore model kinetic study of hematite to iron reduction by hydrogen [J]. Chem. Eng. Sci., 2023, 281: 119116
doi: 10.1016/j.ces.2023.119116
[2] Zhang J J, Shen H Z, Chen Y L, et al. Iron and steel industry emissions: a global analysis of trends and drivers [J]. Environ. Sci. Technol., 2023, 57: 16477
doi: 10.1021/acs.est.3c05474
[3] Yang C C, Xia G H, Zhu D Q, et al. Review of influencing factors on the reduction disintegration performance of iron ore oxidized pellets [J]. Chin. J. Eng., 2024, 46: 1978
杨聪聪, 夏光辉, 朱德庆 等. 铁矿氧化球团低温还原粉化性能的影响因素评述 [J]. 工程科学学报, 2024, 46: 1978
[4] Lu S F, Liu Z J, Wang Y Z, et al. Towards green steel-energy and CO2 assessment of low carbon steelmaking via hydrogen based shaft furnace direct reduction process [J]. Energy, 2024, 309: 133080
doi: 10.1016/j.energy.2024.133080
[5] Pei M, Petäjäniemi M, Regnell A, et al. Toward a fossil free future with HYBRIT: development of iron and steelmaking technology in Sweden and Finland [J]. Metals, 2020, 10: 972
doi: 10.3390/met10070972
[6] Heidari A, Ghosalya M K, Mansouri M A, et al. Hydrogen reduction of iron ore pellets: a surface study using ambient pressure X-ray photoelectron spectroscopy [J]. Int. J. Hydrog. Energy, 2024, 83: 148
doi: 10.1016/j.ijhydene.2024.08.094
[7] Wang R R, Zhao Y Q, Babich A, et al. Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities [J]. J. Clean. Prod., 2021, 329: 129797
doi: 10.1016/j.jclepro.2021.129797
[8] Elsherbiny A A, Qiu D J, Wang K, et al. Parametric study on hematite pellet direct reduction by hydrogen [J]. Powder Technol., 2024, 435: 119434
doi: 10.1016/j.powtec.2024.119434
[9] Kang H P, Xu Q, Cao Z S, et al. Influence of hydrogen flow rate on multistep kinetics of hematite reduction [J]. Int. J. Hydrog. Energy, 2024, 49: 1255
doi: 10.1016/j.ijhydene.2023.08.295
[10] Bararzadeh Ledari M, Khajehpour H, Akbarnavasi H, et al. Greening steel industry by hydrogen: lessons learned for the developing world [J]. Int. J. Hydrog. Energy, 2023, 48: 36623
doi: 10.1016/j.ijhydene.2023.06.058
[11] Lu X Y, Xu Q, Kang H P, et al. Multistep kinetic study of magnetite reduction by hydrogen based on thermogravimetric analysis [J]. Int. J. Hydrog. Energy, 2024, 73: 695
doi: 10.1016/j.ijhydene.2024.06.081
[12] Shahabuddin M, Brooks G, Rhamdhani M A. Decarbonisation and hydrogen integration of steel industries: recent development, challenges and technoeconomic analysis [J]. J. Clean. Prod., 2023, 395: 136391
doi: 10.1016/j.jclepro.2023.136391
[13] Kuila S K, Chatterjee R, Ghosh D. Kinetics of hydrogen reduction of magnetite ore fines [J]. Int. J. Hydrog. Energy, 2016, 41: 9256
doi: 10.1016/j.ijhydene.2016.04.075
[14] Fan J J, Dong L J, Ma C, et al. Research progress on hydrogen-assisted fatigue crack growth of pipeline steels in hydrogen-blended natural gas environment [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 296
樊嘉骏, 董立谨, 马 成 等. 掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 296
doi: 10.11902/1005.4537.2024.218
[15] Li X, Wei B X, Lu Y H, et al. Research progress on hydrogen damage mechanism of pipeline steel in contact with hydrogen environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1125
李 鑫, 韦博鑫, 鲁仰辉 等. 临氢环境下管线钢氢损伤机理研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1125
[16] Ali M L, Fradet Q, Riedel U. Particle-resolved computational modeling of hydrogen-based direct reduction of iron ore pellets in a fixed bed. Part I: methodology and validation [J]. Int. J. Hydrog. Energy, 2024, 87: 332
doi: 10.1016/j.ijhydene.2024.09.028
[17] Choisez L, Hemke K, Özgün Ö, et al. Hydrogen-based direct reduction of combusted iron powder: deep pre-oxidation, reduction kinetics and microstructural analysis [J]. Acta Mater., 2024, 268: 119752
doi: 10.1016/j.actamat.2024.119752
[18] Loder A, Santner S, Siebenhofer M, et al. Reaction kinetics of direct reduction of mineral iron carbonate with hydrogen: determination of the kinetic triplet [J]. Chem. Eng. Res. Des., 2022, 188: 575
doi: 10.1016/j.cherd.2022.10.007
[19] Zhang J H, Li S Y, Wang L W. Kinetics analysis of direct reduction of iron ore by hydrogen in fluidized bed based on response surface methodology [J]. Int. J. Hydrog. Energy, 2024, 49: 1318
doi: 10.1016/j.ijhydene.2023.09.243
[20] Bahgat M, Khedr M H. Reduction kinetics, magnetic behavior and morphological changes during reduction of magnetite single crystal [J]. Mater. Sci. Eng., 2007, 138B: 251
[21] Man Y, Feng J X, Li F J, et al. Influence of temperature and time on reduction behavior in iron ore–coal composite pellets [J]. Powder Technol., 2014, 256: 361
doi: 10.1016/j.powtec.2014.02.039
[22] Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2: Part I: low temperature reduction of hematite [J]. Thermochim. Acta, 2006, 447: 89
doi: 10.1016/j.tca.2005.10.004
[23] Zhang F, Zhu D Q, Pan J, et al. Effect of basicity on the structure characteristics of chromium-nickel bearing iron ore pellets [J]. Powder Technol., 2019, 342: 409
doi: 10.1016/j.powtec.2018.09.100
[24] Cavaliere P, Perrone A, Marsano D. Effect of reducing atmosphere on the direct reduction of iron oxides pellets [J]. Powder Technol., 2023, 426: 118650
doi: 10.1016/j.powtec.2023.118650
[25] Cavaliere P, Dijon L, Laska A, et al. Hydrogen direct reduction and reoxidation behaviour of high-grade pellets [J]. Int. J. Hydrog. Energy, 2024, 49: 1235
doi: 10.1016/j.ijhydene.2023.08.254
[26] Xing L Y, Zou Z S, Qu Y X, et al. Gas–solid reduction behavior of in-flight fine hematite ore particles by hydrogen [J]. Steel Res. Int., 2019, 90: 1800311
doi: 10.1002/srin.v90.1
[27] Sadeghi B, Cavaliere P, Bayat M, et al. Experimental study and numerical simulation on porosity dependent direct reducibility of high-grade iron oxide pellets in hydrogen [J]. Int. J. Hydrog. Energy, 2024, 69: 586
doi: 10.1016/j.ijhydene.2024.05.050
[28] Kim S H, Zhang X, Ma Y, et al. Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700 °C [J]. Acta Mater., 2021, 212: 116933
doi: 10.1016/j.actamat.2021.116933
[29] Kumar Dube R, Deo B. Morphological changes during reduction of magnetite compacts [J]. Steel Res., 1987, 58: 395
doi: 10.1002/srin.1987.58.issue-9
[30] Rau M F, Rieck D, Evans J W. Investigation of iron oxide reduction by TEM [J]. Metall. Trans., 1987, 18B: 257
[31] El-Geassy A A, Nasr M I. Influence of original structure on the kinetics and mechanisms of carbon monoxide reduction of hematite compacts [J]. ISIJ Int., 1990, 30: 417
doi: 10.2355/isijinternational.30.417
[32] Pflieger C, Eckhard T, Böttger J, et al. The catalytic effect of iron oxide phases on the conversion of cellulose-derived chars in diluted O2 and CO2 [J]. Appl. Energy, 2024, 353: 122068
doi: 10.1016/j.apenergy.2023.122068
[1] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[2] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[3] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[4] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
[5] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
[6] HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. 材料研究学报, 2025, 39(5): 353-361.
[7] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[8] LI Honglei, LIU Chuang, LU Zhengwei, CHU Tianyi, CHEN Yuqiu, JIANG Sumeng, GONG Jun, PEI Zhiliang. Preparation and Performance of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, 39(4): 314-320.
[9] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[10] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[11] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[12] HU Ming, ZHANG Xinquan, LI Weiqiang, YANG Xiaokang, HUANG Jinhu, LEI Xiaofei, QIU Jianke, DONG Limin. Effect of Fe- and Cu-content on Microstructure and Mechanical Properties of TC10 Ti-alloy Bars[J]. 材料研究学报, 2025, 39(3): 217-224.
[13] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[14] XU Haoyu, LUO Shenggui, ZHANG Hao, QIN Yanli, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of B4C/AlSi10Mg Composite Prepared by Laser Powder Bed Fusion[J]. 材料研究学报, 2025, 39(12): 909-917.
[15] JIANG Teng, LI Xing, LIU Hanqiang, CUI Shan, LIU Hongliang, LIU Jun, LUAN Yikun, JIANG Zhouhua. Effect of Isothermal Quenching Temperature on Microstructure and Mechanical Properties of Bainite/Martensite Multi-phase 42CrMo Steel[J]. 材料研究学报, 2025, 39(11): 837-844.
No Suggested Reading articles found!