Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (7): 533-541    DOI: 10.11901/1005.3093.2024.340
ARTICLES Current Issue | Archive | Adv Search |
Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel
HAN Yangyi1,2, ZHANG Tenghao1, ZHANG Ke1(), ZHAO Shiyu3, WANG Chuangwei4, YU Qiang5, LI Jinghui1, SUN Xinjun2
1.School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
2.Institute for Tructural Steels, Central Iron and Steel Research Institute Co., Ltd., Beijing 100081, China
3.Long Products Business Division, Ma'anshan Iron and Steel Co., Ltd., Ma'anshan 243003, China
4.Pangang Group Research Institute Co., Ltd., Panzhihua 617000, China
5.Hunan Hualing Lianyuan Iron and Steel Co., Ltd., Technical Center, Loudi 411101, China
Cite this article: 

HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel. Chinese Journal of Materials Research, 2025, 39(7): 533-541.

Download:  HTML  PDF(13475KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A Ti-V-Mo composite microalloyed experimental steel was subjected to series heating-deformation treatment via Gleeble-3800 thermal simulation tester, i.e. firstly it was heated to 1250 oC and kept for 180 s, then cooled down to 890 oC and kept for a certain period of time; Subsequently, compression and deformation treatments were carried out; Afterwards, it was cooled to different (final cooling) temperatures and finally water-quenched. The effect of final cooling temperature on the precipitates, microstructure transformation, and hardness of the steel was systematically studied using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Vickers hardness tester. The precipitation behavior of carbides (Ti, V, Mo)C and its influence on the variation of microstructure and hardness of the steels quenched at different final cooling temperatures were clarified. The results indicated that the microstructure of the test steels consist of granular bainite at 590 oC, polygonal ferrite at temperatures ranging from 630 oC to 690 oC and a mixture of ferrite and martensite at 730 oC. With the increasing final cooling temperature, the average grain size of ferrite increased from 2.7 μm to 5.6 μm, and the average size of (Ti, V, Mo)C precipitates increased from 3.45 nm to 4.71 nm. With the increasing final cooling temperature from 590 oC to 730 oC, the hardness increased first, then remain stable and then decreased rapidly. For the isothermal final cooling temperature within the range 630~660 oC, the hardness was up to 485HV, which was due to the saturation of the fine grain strengthening of ferrite and the precipitation strengthening of (Ti, V, Mo)C. The fine grain strengthening caused by ferrite grain refinement and the precipitation strengthening caused by the precipitation of (Ti, V, Mo)C were dominant factors of hardness change at different final cooling temperatures.

Key words:  metallic materials      final cooling temperature      Ti-V-Mo complex microalloyed steel      microstructure      precipitation      hardness     
Received:  15 August 2024     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(52474340);Anhui Province Higher Education Scientific Research Project(2023AH051090)
Corresponding Authors:  ZHANG Ke, Tel: 18955578155, E-mail: huzhude@yeah.net

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.340     OR     https://www.cjmr.org/EN/Y2025/V39/I7/533

CSiMnTiVMoPSNFe
0.160.161.040.200.410.440.00410.00520.0046Bal.
Table.1  Chemical composition of experimental steel (mass fraction, %)
Fig.1  Schematic diagram of thermal simulation process of Ti-V-Mo experimental steel
Fig.2  Experimental steel supercooled austenite isothermal transformation curve
Fig.3  OM images of experimental steel at different final cooling temperatures (a) 590 ℃, (b) 630 ℃, (c) 660 ℃, (d) 690 ℃, (e) 730 ℃
Fig.4  SEM images of experimental steel at different final cooling temperatures (a) 590 ℃, (b) 690 ℃, (c) 730 ℃
Fig.5  Average size of ferrite grains in experimental steel at different final cooling temperatures
Fig.6  HRTEM images, Fourier-transform diffraction patterns and EDS of nano-precipitates at 660 oC (a) HRTEM images, (b) magnified HRTEM image of (a), (c) the fast Fourier transformation diffractogram, (d) EDS analysis
Fig.7  TEM images and size distribution of experimental steel at different final cooling temperatures (a, b) 630 oC, (c, d) 660 oC, (e, f) 690 oC
Fig.8  Average size of nano-sized precipitates at different final cooling temperatures
Fig.9  Hardness and fitting curves of hardness for experimental steel at different final cooling temperature
[1] Huo X D, He K, Xia J N, et al. Isothermal transformation and precipitation behaviors of titanium microalloyed steels [J]. J. Iron Steel. Res. Int., 2021, 28(3): 335
[2] Luo H Y, Cao J C, Zeng M, et al. Effect of Zr on deformed austenite recrystallization and precipitates in Ti-microalloyed low carbon steel [J]. Chin. J. Mater. Res., 2022, 36(2): 123
doi: 10.11901/1005.3093.2021.207
罗瀚宇, 曹建春, 曾 敏 等. Zr对Ti微合金化低碳钢形变奥氏体再结晶和析出相的影响 [J]. 材料研究学报, 2022, 36(2): 123
doi: 10.11901/1005.3093.2021.207
[3] Wang Y X, Chen X R, Zhao H, et al. Effect of cluster chemistry on the strengthening of Al alloys [J]. Acta Mater., 2024, 269: 119809
[4] Bian B X, Söltzer L, Muralikrishna G M, et al. Grain boundary diffusion in a compositionally complex alloy: interplay of segregation, precipitation and interface structures in a Ni-Cr-Mo alloy [J]. Acta Mater., 2024, 269: 119803
[5] Rodriguez-Galeano K F, Nutter J, Azakli Y, et al. Influence of Cr and Cr+Nb on the interphase precipitation and mechanical properties of V-Mo microalloyed steels [J]. Mater. Sci. Eng., 2024, 893A: 146140
[6] Li R H, Hu X Y, Wang Z C, et al. High-temperature mechanical properties and strengthening mechanism of new secondary hardened steel 25CrMo3NiTiVNbZr [J]. Chin. J. Mater. Res., 2024, 38(5): 390
doi: 10.11901/1005.3093.2023.516
李若浩, 胡霄雨, 王中成 等. 新型二次硬化钢25CrMo3NiTiVNbZr的高温力学性能和强化机理 [J]. 材料研究学报, 2024, 38(5): 390
doi: 10.11901/1005.3093.2023.516
[7] Zhang J, Xin W B, Ge Z W, et al. Effect of high heat input welding on the microstructures, precipitates and mechanical properties in the simulated coarse grained heat affected zone of a low carbon Nb-V-Ti-N microalloyed steel [J]. Mater. Charact., 2023, 199: 112849
[8] Shen T Y, Liu H, Yang G J, et al. Influence of cryogenic treatment time on the mechanical properties of AZ31 magnesium alloy sheets after cross-rolling [J]. J. Alloy. Compd., 2024, 986: 174096
[9] Zhang T H, Wei H Y, Zhang K, et al. Effect of cooling medium on the κ carbide precipitation behavior, microstructure and impact properties of FeMnAlC low-density steel [J]. Mater. Today Commun., 2023, 37: 107084
[10] Yang Y L, Jia X, Ma Y X, et al. Effect of Nb on inclusions and phase transformation in simulated high heat input coarse-grain HAZ of Nb/Ti low carbon microalloyed steel [J]. Mater. Charact., 2022, 189: 111966
[11] Zhu Z M, Yu H, Wang K, et al. Quantitative analysis of precipitation and strengthening mechanisms of V and V-Ti hot-rolled microalloyed steels [J]. J. Mater. Sci., 2022, 57: 4806
[12] Gu C, Scott C, Fazeli F, et al. Evolution of the microstructure and mechanical properties of a V-containing microalloyed steel during coiling [J]. Mater. Sci. Eng., 2023, 880A: 145332
[13] Zhao X J, Zhao K, Liu C B, et al. Effect of ausforming on the bainitic transformation and microstructure in medium carbon V-N micro-alloyed steel [J]. J. Mater. Res. Technol., 2023, 23: 637
[14] Yuan Q, Ren J, Mo J X, et al. Effects of rapid heating on the phase transformation and grain refinement of a low-carbon mciroalloyed steel [J]. J. Mater. Res. Technol., 2023, 23: 3756
[15] Liu W S, Wei H Y, Zhang K, et al. Strain-induced precipitation behavior and microstructure evolution of Ti-V-Mo complex microalloyed steel [J]. J. Mater. Eng. Perform., 2024, 33: 12543
[16] Han R, Liu H X, Wei W C, et al. Precipitates and their strengthening in Ti-V-Mo microalloyed 22MnB5 steel [J]. Iron Steel, 2022, 57(2): 127
韩 荣, 刘洪喜, 尉文超 等. Ti-V-Mo微合金化22MnB5钢中析出相及其强化作用 [J]. 钢铁, 2022, 57(2): 127
[17] Zhang K, Zhang T H, Wei H Y, et al. Effect of isothermal holding time on microstructure, precipitates and hardness of Ti-V-Mo microalloyed steel during coiling process [J]. J. Mater. Res. Technol., 2024, 32: 753
[18] Zhang K, Li Z D, Sun X J, et al. Development of Ti-V-Mo complex microalloyed hot-rolled 900-MPa-grade high-strength steel [J]. Acta. Metall. Sin. (Engl. Lett.), 2015, 28: 641
[19] He P, Hu H J, Wang W, et al. On the correlation among isothermal transformation, interphase precipitation behaviour and elements partitioning in Ti-Mo microalloyed steel [J]. J. Mater. Res. Technol., 2024, 29: 1901
[20] Fu Z X, Yang G W, Mao X P, et al. Microstructure evolution and precipitation behavior of hot-rolled high-strength Ti-Mo-V micro-alloyed steel [J]. J. Mater. Res. Technol., 2023, 27: 8132
[21] Yi H L, Du L X, Wang G D, et al. Development of Nb-V-Ti hot-rolled high strength steel with fine ferrite and precipitation strengthening [J]. J. Iron Steel Res. Int., 2009, 16(4): 72
[22] Zhao S Y. Study on the nano-precipitation behavior, microstructure and mechanical properties of Ti-V-Mo complex microalloyed steel [D]. Ma′anshan: Anhui University of Technology, 2021
赵时雨. Ti-V-Mo复合微合金钢纳米相析出行为及组织硬度研究 [D]. 马鞍山: 安徽工业大学, 2021
[23] Gong H C, Fan Q B, Zhang H M, et al. Deciphering the quantitative relationships between age-induced hierarchical microstructure characteristics and tensile properties of Ti20C alloy [J]. Mater. Charact., 2024, 207: 113567
[24] Bhattacharya A, Mondal K, Upadhyay C S, et al. A phase-field investigation of the effect of grain-boundary diffusion on austenite to ferrite transformation [J]. Comp. Mater. Sci., 2020, 173: 109428
[25] Zhou Q R. Research on microstructure and mechanical properties of HG550 beam steel under ultra-fast cooling conditions [D]. Shenyang: Northeastern University, 2015
周庆茹. 超快冷条件下大梁钢HG550组织性能研究 [D]. 沈阳, 东北大学, 2015
[26] Wang Y Z, Jiang Z H, Jia C N, et al. Microstructure and mechanical properties of an austempered nanostructured bainitic steel [J]. Chin. J. Mater. Res., 2024, 38(4): 279
doi: 10.11901/1005.3093.2023.370
王玉钊, 蒋中华, 贾春妮 等. 等温淬火对纳米贝氏体钢的组织和力学性能的影响 [J]. 材料研究学报, 2024, 38(4): 279
doi: 10.11901/1005.3093.2023.370
[27] Zhang K, Li Z D, Sui F L, et al. Effect of cooling rate on microstructure evolution and mechanical properties of Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin., 2018, 54(1): 31
doi: 10.11900/0412.1961.2017.00202
张 可, 李昭东, 隋凤利 等. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响 [J]. 金属学报, 2018, 54(1): 31
[28] Cui Z Q, Tan Y C. Metallography and Heat Treatment [M] Beijing: China Machine Press, 2007: 410
崔忠圻, 谭耀春. 金属学与热处理 [M]. 北京: 机械工业出版社, 2007: 410
[29] Zhang K, Wang H, Sun X J, et al. Precipitation behavior and microstructural evolution of ferritic Ti-V-Mo complex microalloyed steel [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 997
[30] Ollilainen V, Kasprzak W, Holappa L. The effect of silicon, vanadium and nitrogen on the microstructure and hardness of air cooled medium carbon low alloy steels [J]. J. Mater. Process. Technol., 2003, 134: 405
[31] Gan X L, Yuan Q, Zhao G, et al. Quantitative analysis of microstructures and strength of Nb-Ti microalloyed steel with different Ti additions [J]. Metall. Mater. Trans., 2020, 51A: 2084
[32] Chen C Y, Yang J R, Chen C C, et al. Microstructural characterization and strengthening behavior of nanometer sized carbides in Ti-Mo microalloyed steels during continuous cooling process [J]. Mater. Charact., 2016, 114: 18
[33] Guo F, Zheng C W, Wang P, et al. Effect of rare earth elements on austenite-ferrite phase transformation kinetics of low carbon steels [J]. Chin. J. Mater. Res., 2023, 37(7): 495
doi: 10.11901/1005.3093.2022.109
郭 飞, 郑成武, 王 培 等. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响 [J]. 材料研究学报, 2023, 37(7): 495
[34] Sun J, Liu G, Yang C, et al. Heat-resistant Al alloys: microstructural design and preparation [J]. Acta Metall. Sin, 2025, 61: 521
doi: 10.11900/0412.1961.2024.00345
孙 军, 刘 刚, 杨 冲 等. 耐热铝合金: 组织设计与合金制备 [J]. 金属学报, 2025, 61: 521
[35] Wang J T, Beladi H, Pan L B, et al. Interphase precipitation hardening of a TiMo microalloyed dual-phase steel produced by continuous cooling [J]. Mater. Sci. Eng., 2021, 804A: 140518
[36] Bu F Z, Wang Y B, Zheng L H, et al. Precipitation of nanoscale carbides in Ti-Mo microalloyed steel during tempering process [J]. J. Iron Steel Res., 2018, 30(11): 928
卜凡征, 王玉斌, 郑连辉 等. Ti-Mo微合金钢回火过程中纳米碳化物析出行为 [J]. 钢铁研究学报, 2018, 30(11): 928
doi: 10. 13228/j.boyuan.issn1001- 0963. 20180080
[37] Yong Q L. Second Phases in Structural Steels [M]. Beijing: Metallurgical Industry Press, 2006: 1
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 1
[38] Karmakar A, Mukherjee S, Kundu S, et al. Effect of composition and isothermal holding temperature on the precipitation hardening in Vanadium-microalloyed steels [J]. Mater. Charact., 2017, 132: 31
[39] Zhang K, Yong Q L, Sun X J, et al. Effect of coiling temperature on micro-structure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel [J]. Acta Metall. Sin., 2016, 52(5): 529
doi: 10.11900/0412.1961.2015.00411
张 可, 雍岐龙, 孙新军 等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响 [J]. 金属学报, 2016, 52(5): 529
[40] Kim Y W, Song S W, Seo S J, et al. Development of Ti and Mo micro-alloyed hot-rolled high strength sheet steel by controlling thermomechanical controlled processing schedule [J]. Mater. Sci. Eng., 2013, 565A: 430
[41] Pavlina E J, Van Tyne C J. Correlation of yield strength and tensile strength with hardness for steels [J]. J. Mater. Eng. Perform., 2008, 17: 888
[1] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[2] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[3] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[4] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
[5] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
[6] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[7] WANG Henglin, DING Hanlin, CHAI Feng, LUO Xiaobing, WANG Zijian, XIANG Chongchen. Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures[J]. 材料研究学报, 2025, 39(6): 401-412.
[8] YUAN Xinyu, SHI Fei, LIU Jingxiao, ZHANG Haojie, YANG Dayi, WANG Meiyu, REN Ming. Effect of Er2O3 Addition on Crystallization Behavior and Properties of Lithium Disilicate Glass Ceramics[J]. 材料研究学报, 2025, 39(6): 455-462.
[9] HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. 材料研究学报, 2025, 39(5): 353-361.
[10] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[11] QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang, REN Yanjie, CHEN Jian. Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries[J]. 材料研究学报, 2025, 39(5): 389-400.
[12] WU Yucheng, ZUO Tong, TAN Xiaoyue, ZHU Xiaoyong, LIU Jiaqin. Oxidation Behavior of Self-passivated W-Cr-Zr Alloys as the First Wall Candidate Material[J]. 材料研究学报, 2025, 39(5): 343-352.
[13] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[14] LI Honglei, LIU Chuang, LU Zhengwei, CHU Tianyi, CHEN Yuqiu, JIANG Sumeng, GONG Jun, PEI Zhiliang. Preparation and Performance of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, 39(4): 314-320.
[15] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
No Suggested Reading articles found!