Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (12): 909-917    DOI: 10.11901/1005.3093.2025.097
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Properties of B4C/AlSi10Mg Composite Prepared by Laser Powder Bed Fusion
XU Haoyu1, LUO Shenggui2, ZHANG Hao2, QIN Yanli1(), NI Dingrui2, XIAO Bolv2, MA Zongyi2
1.School of Science, Shenyang Ligong University, Shenyang 110158, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

XU Haoyu, LUO Shenggui, ZHANG Hao, QIN Yanli, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of B4C/AlSi10Mg Composite Prepared by Laser Powder Bed Fusion. Chinese Journal of Materials Research, 2025, 39(12): 909-917.

Download:  HTML  PDF(30422KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 7% B4C/AlSi10Mg (mass fraction) composite was fabricated using laser powder bed fusion (LPBF) technology. The process parameters such as laser power and scanning speed were optimized. The influence of line energy density on density, microstructure, mechanical properties, and thermophysical characteristics of the acquired composite was assessed. Results indicate that with the rising line energy density, the density of the composite increases initially then decreases, reaching peak value of 97% by 196.4 J/m. High-temperature diffusion of C and B elements from micron-sized B4C particles induced interfacial reactions, generating the in-situ formation of Al3BC, AlB2 phases, and trace Al4C3 phases. The acquired composite exhibited room-temperature tensile strength of ~487 MPa, micro-Vickers hardness of ~192HV, specific stiffness of 31.81 m2/s2, and thermal expansion coefficient ranging from 11.9 × 10-6/°C to 21.1 × 10-6/oC between 22-400 oC. The average thermal conductivity measured as 107.6 W·m-1·K-1. The high specific stiffness and low thermal expansion coefficient of this composite make it suitable for manufacturing space optical-mechanical structural components.

Key words:  composite      laser powder bed fusion      microstructure      mechanical properties      thermophysical properties     
Received:  04 March 2025     
ZTFLH:  TG146.2  
Fund: National Key R & D Program(2023YFB4603301);National Natural Science Foundation of China(U21A2043)
Corresponding Authors:  QIN Yanli, Tel: 13504903919, E-mail: qylndr0628@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2025.097     OR     https://www.cjmr.org/EN/Y2025/V39/I12/909

ElementsAlMgSiFeMnCuTi
Content / %, mass fraction88.930.2910.320.160.100.050.15
Table 1  Chemical composition of AlSi10Mg alloy powder
Fig.1  Powder morphology (a) AlSi10Mg, (b) B4C, (c) B4C/AlSi10Mg composite powder
ParametersParameter range
Laser power / W275-325
Scanning velocity / mm·s-11000-1400
Hatching spacing / µm70
Layer thickness / µm30
Table 2  LPBF forming process parameters
Fig.2  Variation of density of B4C/AlSi10Mg composite with linear energy density
Fig.3  XRD patterns of B4C/AlSi10Mg composite
Fig.4  SEM images (a, b), EBSD images (c, d), and pole figures (e, f) of AlSi10Mg alloy (a, c, e) and B4C/AlSi10Mg composite (b, d, f)
Fig.5  Statistical analysis (a, b) and grain boundary morphologies (c, d) of AlSi10Mg alloy (a, c) and B4C/AlSi10Mg composite (b, d)
Fig.6  SEM images (a, b), an inverse pole figure X-ray (IPFX) map (c), a phase diagram (d), and an EDS spectra (e) of the B4C/AlSi10Mg composite
Fig.7  TEM images and EDS spectra of the B4C/AlSi10Mg composite
Fig.8  High-resolution images (a), diffraction patterns (b), and fast Fourier transform (FFT) of the high-resolution images (c) of Al3BC along the [100] zone axis and Al along the [110] zone axis
MaterialsDensity / g·cm-3

Elastic modulus

/ GPa

Specific stiffness / m2·s-2
Al2.7068.0025.19
Mg-Al alloy1.8040.0022.22
Al60612.7068.9025.52
AlSi10Mg2.6271.0027.10
B4C/AlSi10Mg2.6784.9231.81
Table 3  Specific stiffness of commonly used optical and mechanical structural component materials[19,20]
Fig.9  Typical tensile curves of LPBF-formed B4C/AlSi10Mg composite
Fig.10  Fracture morphology of B4C/AlSi10Mg composite formed by LPBF
Fig.11  Thermal expansion coefficient of B4C/AlSi10Mg composite formed by LPBF
Fig.12  Thermal conductivity of B4C/AlSi10Mg composite
[1] Gupta P K, Trivedi A K, Gupta M K, et al. Metal matrix composites for sustainable products: A review on current development [J]. Proc. Inst. Mech. Eng., 2024, 328L: 1827
[2] Kaczmar J W, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials [J]. J. Mater. Process. Technol., 2000, 106(1-3): 58
doi: 10.1016/S0924-0136(00)00639-7
[3] Srivastava A. Recent advances in metal matrix composites (MMCs): A review [J]. Biomed. J. Sci. Tech. Res., 2017, 1: 520
[4] Reddy P V, Kumar G S, Krishnudu D M, et al. Mechanical and wear performances of Aluminium-based metal matrix composites: A review [J]. J. Bio Tribocorros., 2020, 6: 83
[5] Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
[6] Todd I. No more tears for metal 3D printing [J]. Nature, 2017, 549(7672): 342
doi: 10.1038/549342a
[7] Delahaye J, Habraken A M, Mertens A. 2D FE modeling of the thermal history of the heat affected zone in AlSi10Mg LPBF [J]. Mater. Res. Proc., 2023, 28: 189
[8] Li C G, Sun S, Liu C M, et al. Microstructure and mechanical properties of TiC/AlSi10Mg alloy fabricated by laser additive manufacturing under high-frequency micro-vibration [J]. J. Alloy. Compd., 2019, 794: 236
doi: 10.1016/j.jallcom.2019.04.287
[9] Gu D D, Wang H Q, Chang F, et al. Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties [J]. Phys. Procedia, 2014, 56: 108
doi: 10.1016/j.phpro.2014.08.153
[10] Xi X, Chen B, Tan C W, et al. Microstructure and mechanical properties of SiC reinforced AlSi10Mg composites fabricated by laser metal deposition [J]. J. Manuf. Process., 2020, 58: 763
doi: 10.1016/j.jmapro.2020.08.073
[11] Yang Z Y, Fan J Z, Liu Y Q, et al. Strengthening and weakening effects of particles on strength and ductility of SiC particle reinforced Al-Cu-Mg alloys matrix composites [J]. Materials, 2021, 14(5): 1219
doi: 10.3390/ma14051219
[12] Dai D H, Gu D D, Xia M J, et al. Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite [J]. Surf. Coat. Technol., 2018, 349: 279
doi: 10.1016/j.surfcoat.2018.05.072
[13] Tan Q Y, Zhang J Q, Mo N, et al. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles [J]. Add. Manufact., 2020, 32: 101034
[14] Zhang L L, Jiang H X, He J, et al. Kinetic behaviour of TiB2 particles in Al melt and their effect on grain refinement of aluminium alloys [J]. Trans. Nonferrous Met. Soc. China, 2020, 30(8): 2035
doi: 10.1016/S1003-6326(20)65358-4
[15] Zhang S Z, Chen Z, Wei P, et al. Microstructure and properties of a nano-ZrO2-reinforced AlSi10Mg matrix composite prepared by selective laser melting [J]. Mater. Sci. Eng., 2022, 838A: 142792
[16] Gao C, Wu W, Shi J, et al. Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting [J]. Add. Manufact., 2020, 34: 101378
[17] Guo H, Zhang Z W, Zhang Y, et al. Improving the mechanical properties of B4C/Al composites by solid-state interfacial reaction [J]. J. Alloy. Compd., 2020, 829: 154521
doi: 10.1016/j.jallcom.2020.154521
[18] Zhao Y F, Ma X, Chen H W, et al. Preferred orientation and interfacial structure in extruded nano-Al3BC/6061 Al [J]. Mater. Des., 2017, 131: 23
doi: 10.1016/j.matdes.2017.05.088
[19] Ren J Y, Chen C Z, He B, et al. Application of SiC and SiC/Al to TMA optical remote sensor [J]. Opt. Precis. Eng., 2008, 16(12): 2537
[20] Zhang D Y, Yi D H, Wu X P, et al. SiC reinforced AlSi10Mg compsites fabricated by selective laser melting [J]. J. Alloy. Compd., 2022, 894: 162365
doi: 10.1016/j.jallcom.2021.162365
[21] Xue G, Ke L D, Zhu H H, et al. Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, 764A: 138155
[1] LIU Jinling, ZHANG Yan, QI Dongming, YU Yihao. Preparation and Performance of Flame-retardant Electromagnetic Shielding Composite Films of Sandwich Structure[J]. 材料研究学报, 2025, 39(9): 650-660.
[2] XIE Fangxia, WU Guangqing, ZHANG Shiwen, LU Zeyi, MU Yanming, HE Xueming. Preparation and Performance of a Novel Al-alloy Based Composite 7075-TiB2[J]. 材料研究学报, 2025, 39(9): 683-693.
[3] WANG Binglin, CHAI Yifeng, TAN Shengxia, GUO Shengwei, JIANG Ru, ZHU Zhonghua, ZHANG Yutao, HUANG Guifang, HUANG Weiqing. Construction and Photocatalytic Performance Study of g-C3N4/CdS S-scheme Heterojunction[J]. 材料研究学报, 2025, 39(9): 712-720.
[4] ZHANG Ruoyun, WANG Wei, GONG Penghui, DING Shijie, LIU Xianhao, SUN Zhuang, LV Fanfan, GAO Yuan, WANG Kuaishe. High-temperature Tribological Performance of Organic-inorganic Hybrid Modified Phosphate/Graphite Lubricating Coatings[J]. 材料研究学报, 2025, 39(9): 661-672.
[5] YANG Zhiru, HOU Wentao, ZHOU Hai, YANG Zi, HE Hao, JIN Chao. Synthesis of High-performance Core-shell Structured Electrodes of Co3O4/Co9S8 for Quasi-solid-state Supercapacitors[J]. 材料研究学报, 2025, 39(8): 569-582.
[6] LIU Endian, BAI Yu, LI Jiawen, HAO Hai. Preparation of Bi-continuous Interpenetrating Porous Composite and Its Heat Treatment Enhancement[J]. 材料研究学报, 2025, 39(7): 481-488.
[7] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[8] SUN Shimao, LIU Hongchang, LIU Hongwei, WANG Jun, SHANG Chenkai. Preparation and Electrochemical Properties of Rare Earth Ion Doped Diatom Anode Materials[J]. 材料研究学报, 2025, 39(7): 499-509.
[9] CHEN Yuming, ZHU Xiaoyong, TAN Xiaoyue, LIU Jiaqin, WU Yucheng. Mechanical Properties of W-Y2O3 Composites as Candidate of the First Wall Material Faced Plasma[J]. 材料研究学报, 2025, 39(7): 510-520.
[10] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[11] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[12] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
[13] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
[14] MA Xue′e, HU Meifeng, SONG Xueli, CHANG Yue, ZHA Fei. Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites[J]. 材料研究学报, 2025, 39(6): 413-424.
[15] YANG Yanyan, LIU Yan, YANG Song, WANG Zitong, ZHU Feng, YU Zhongliang, HAO Xiaogang. Performance of Graphene-doped Polypyrrole/Co-Ni Double Hydroxide for Electronic Separation of Low Concentration Phosphates[J]. 材料研究学报, 2025, 39(6): 425-434.
No Suggested Reading articles found!