Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (11): 837-844    DOI: 10.11901/1005.3093.2025.031
ARTICLES Current Issue | Archive | Adv Search |
Effect of Isothermal Quenching Temperature on Microstructure and Mechanical Properties of Bainite/Martensite Multi-phase 42CrMo Steel
JIANG Teng1,2, LI Xing2(), LIU Hanqiang2, CUI Shan1, LIU Hongliang3, LIU Jun3, LUAN Yikun2, JIANG Zhouhua1
1.School of Metallurgy, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Benxi Iron and Steel Group Co. , Ltd. Technical Center, Benxi 117000, China
Cite this article: 

JIANG Teng, LI Xing, LIU Hanqiang, CUI Shan, LIU Hongliang, LIU Jun, LUAN Yikun, JIANG Zhouhua. Effect of Isothermal Quenching Temperature on Microstructure and Mechanical Properties of Bainite/Martensite Multi-phase 42CrMo Steel. Chinese Journal of Materials Research, 2025, 39(11): 837-844.

Download:  HTML  PDF(13994KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of isothermal quenching temperatures below Ms point on the microstructure and mechanical properties of bainite/martensite multi-phase 42CrMo steel was studied by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD), thermal expansion analyzer and mechanical property tester. The results show that the microstructure of 42CrMo steel is composed of bainite and martensite phase after isothermal quenching at 250 oC, 280 oC and 310 oC, correspondingly, the quenched 42CrMo steels were named as 250#, 280# and 310# steel respectively. With the increasing isothermal quenching temperature, the phase transformation rate of bainite is enhanced, and bainite volume fraction increases from 18% to 63%. The mode of impact fracture transforms from brittle cleavage fracture to mixed fracture, while the impact toughness is significantly improved. The bainite/martensite multi-phase microstructure of 250# and 280# steels is fine. However, bainite and martensite laths of 310# coarsens, and large-sized martensite block appears, so that its tensile strength decreases. The total grain boundary length of 280# is 1.65 times that of 250#, and 2.43 times that of 310# respectively. The significantly increased grain boundary density makes 280# possess the highest yield strength. After being isothermally hold at 280 oC for 1.5 h then quenched, the yield strength and tensile strength of 42CrMo steel reach 1399 MPa and 1708 MPa, respectively, and the elongation and impact absorption energy are 12.3% and 51.6 J, respectively. Compared with 310# and 250#, the 280# steel has better overall mechanical properties.

Key words:  metallic materials      isothermal quenching      microstructure      mechanical properties      bainite     
Received:  16 January 2025     
ZTFLH:  TG142  
Fund: National Natural Science Foundation of China(52404354)
Corresponding Authors:  LI Xing, Tel: 13840529408, E-mail: xingli@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2025.031     OR     https://www.cjmr.org/EN/Y2025/V39/I11/837

SteelCSiMnCrMoLa
42CrMo0.400.270.761.100.210.011
Table 1  Chemical composition of 42CrMo steel (mass fraction, %)
Fig.1  Phase transformation expansion curve of 42CrMo
Fig.2  Isothermal quenching heat treatment process
Fig.3  Microstructure of tested steel after isothermal quenching at different temperature (a) 250#; (b) 280#; (c) 310#
Fig.4  EBSD diagram of tested steel after isothermal quenching at different temperature (a) 250#; (b) 280#; (c) 310#; (d) boundary length
No.Bainite width /μm

Bainite length /

μm

Martensite width /

μm

Martensite length /μm
250#1.0510.551.5711.28
280#1.1210.651.6412.31
310#1.5511.272.2614.22
Table 2  Lath size of samples after isothermal quenching at different temperature
Fig.5  XRD pattern (a) and phase volume fraction (b) of tested steel after isothermal quenching at different temperature
Fig.6  Thermal expansion curves of tested steel after isothermal quenching at different temperature (a) 250#; (b) 280 #; (c) 310 #
Fig.7  Expansion-time curves of tested steel after isothermal quenching at different temperature
Fig.8  Engineering stress-strain curves (a) and U-shaped notch impact absorption energy (b) of tested steel after isothermal quenching at different temperature
No.Yield strength / MPaUltimate tensile strength / MPaElongation / %Impact energy / J
250#1352 ± 21.71770 ± 15.211.6 ± 0.341.0 ± 1.6
280#1399 ± 15.11708 ± 21.212.3 ± 0.351.6 ± 2.0
310#1266 ± 11.41550 ± 31.413.0 ± 0.255.6 ± 2.5
Table 3  Mechanical properties of tested steel after isothermal quenching at different temperature
Fig.9  Macroscopic morphology of tensile fracture (a) 250#; (b) 280#; (c) 310#
Fig.10  Morphology of impact fracture (a) 250#; (b) 280#; (c)310#
Fig.11  EBSD diagram of secondary cracks at the impact fracture (a) 250#; (b) 280#; (c) 310#
[1] Lu T, Li W Y, Wang C L, et al. Friction welding of two carbon low alloy steels 42CrMo and 36Mn2V: effects of forging pressure and post-weld heat treatment on microstructure and mechanical properties [J]. Weld World, 2025, 69: 383
[2] Wang H J, Wang X Q, Tian Y J, et al. Simulation study of turning-ultrasonic rolling compound processing for 42CrMo steel [J]. Sci. Rep., 2024, 14: 23088
[3] Ai M P. Improvement of heat treatment and hot-dip galvanizing process for 42CrMo steel multisection draw-bar [J]. Heat Treat. Met., 2009, 34(5): 103
艾明平. 42CrMo钢多节拉杆热处理及热浸镀锌工艺改进 [J]. 金属热处理, 2009, 34(5): 103
[4] Ma Z, Liu K M, Zhang L Y. Study on the structure of grind-hardened layer and parameter of hardening depth of 42CrMo steel [J]. Adv. Mat. Res., 2011, 189-193: 969
[5] Liu K M, Zhang L Y, Ma Z, et al. Research on the properties of grind-hardening and abrasion of 42CrMo steel in agricultural diesel engine crankshaft [J]. Adv. Mat. Res., 2012, 619: 567
[6] Wang G C, Jiao B, Zou J F, et al. Impact of original micro-structure on grind-hardened layer of 42CrMo steel in grind-hardening [J]. Mater. Sci. Forum, 2016, 878: 22
[7] Zhou Z J, Jiang F L, Yang F Z, et al. Novel laser cladding FeCoNiCrNb0.5Mo x high-entropy alloy coatings with excellent corrosion resistance [J]. Mater. Lett., 2023, 335: 133714
[8] Wang H J, Wang X Q, Tian Y J, et al. Study on theory and finite element simulation of ultrasonic rolling extrusion process [J]. Int. J. Adv. Manuf. Technol., 2024, 134: 1091
[9] Kabirmohammadi M, Yazdani S, Saeid T, et al. Microstructural evolution and mechanical performance of friction stir spot welded ultrafine carbide-free bainitic steel: Role of dwell time [J]. J. Mater. Res. Technol., 2024, 33: 4033
[10] Panjiar H, Murugananth M. Neural network modelling of the Nb effect on mechanical properties of the ferritic bainitic dual-phase steel [J]. Can. Metall. Quart., 2024, 63: 1093
[11] Gholambargani M, Palizdar Y, Khanlarkhani A, et al. Microstructural design and mechanical enhancement of δ-TRIP steel through Mo micro-alloying and isothermal bainitic transformation [J]. Proc. Inst. Mech. Eng., 2024, 238L: 1500
[12] Zhang Z T, Zhao G, Xiao H, et al. Effects of quenching temperature and partitioning temperature on microstructure and properties of Q&P980 steel produced by CSP process [J]. Hot Work Technol., 2024, 53(14): 93
张钟涛, 赵 刚, 肖 欢 等. 淬火温度和配分温度对CSP生产的Q&P980钢组织及性能的影响 [J]. 热加工工艺, 2024, 53(14): 93
[13] Ji H B, Wang J M, Wang Z Y, et al. Effect of martensitic variant selection on the crystallographic features of bainite/martensite multiphase structure of 42CrMo steel [J]. J. Mater. Res. Technol., 2024, 30: 9561
[14] Wang X M, Zhao A M, Bao Z Y. The mechanical properties and microstructure of 1,000 MPa grade Cu-Ni TRIP steel at different bainitic isothermal temperatures [J]. Int. J. Mater. Prod. Technol., 2022, 65: 30
[15] Wen C, Dong W, Liang H L, et al. Isothermal quenching and tempering of 42CrMo steel [J]. Heat Treat. Met., 2014, 39(12): 50
文 超, 董 雯, 梁会雷 等. 42CrMo钢的等温淬火和回火 [J]. 金属热处理, 2014, 39(12): 50
[16] Beladi H, Tari V, Timokhina I B, et al. On the crystallographic characteristics of nanobainitic steel [J]. Acta Mater., 2017, 127: 426
[17] Liu J W, Wei S T, Lu S P. Bainite nucleation mechanism and mechanical properties in low carbon bainite deposited metals with different nickel additions [J]. Mater. Sci. Eng., 2022, 857A: 144036
[18] Wang P, Song Z C, Lin Y C, et al. The nucleation mechanism of martensite and its interaction with dislocation dipoles in dual-phase high-entropy alloys [J]. J. Alloy. Compd., 2022, 909: 164685
[19] Lin S, Borgenstam A, Stark A, et al. Effect of Si on bainitic transformation kinetics in steels explained by carbon partitioning, carbide formation, dislocation densities, and thermodynamic conditions [J]. Mater. Charact., 2022, 185: 111774
[20] Liu M, Hu H J, Kern Maximilian K, et al. Effect of integrated austempering and Q&P treatment on the transformation kinetics, microstructure and mechanical properties of a medium-carbon steel [J]. Mater. Sci. Eng., 2023, 869A: 144780
[21] Zhao Z F, Wei Y G. Intrinsic characteristics of grain boundary elimination induced by plastic deformation in front of intergranular microcracks in bcc iron [J]. Int. J. Plast., 2025, 184: 104208
[22] Xing J N, Cai X, Zheng L G, et al. Effect of quenching and tempering temperature on microstructure and mechanical properties of a new medium carbon alloy steel 42CrMo4M [J]. Trans. Mater. Heat Treat., 2022, 43(5): 124
邢嘉倪, 蔡 欣, 郑雷刚 等. 淬火及回火温度对新型中碳合金钢42CrMo4M组织性能的影响 [J]. 材料热处理学报, 2022, 43(5): 124
[23] Li Z, Fu Z H, Yang C Y, et al. Improving the microstructure and impact toughness of bainite/martensite bearing steel by rare earth treatment [J]. Metall. Mater. Trans., 2024, 55A: 4965
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] XIE Fangxia, WU Guangqing, ZHANG Shiwen, LU Zeyi, MU Yanming, HE Xueming. Preparation and Performance of a Novel Al-alloy Based Composite 7075-TiB2[J]. 材料研究学报, 2025, 39(9): 683-693.
[4] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[5] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[6] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[7] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[8] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[9] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[10] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[11] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[12] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[13] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[14] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[15] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
No Suggested Reading articles found!