Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (7): 489-498    DOI: 10.11901/1005.3093.2024.319
ARTICLES Current Issue | Archive | Adv Search |
Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy
ZHANG Ning1,2,3(), WANG Yaoqi1,2,3, YANG Yi4, MU Yanhong1,2,3, LI Zhen1,2,3, CHEN Zhiyong5
1.AVIC Manufacturing Technology Institute, Beijing 100024, China
2.Aeronautical Key Laboratory for Plastic Forming Technology, Beijing 100024, China
3.Beijing Key Laboratory of Digital Forming Technology and Equipment, Beijing 100024, China
4.Shanxi Aircraft Industry Co., Ltd., Hanzhong 710048, China
5.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy. Chinese Journal of Materials Research, 2025, 39(7): 489-498.

Download:  HTML  PDF(19636KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The superplastic deformation behavior of Ti65 Ti-alloy was studied via tensile testing in temperature range of 900~960 oC at strain rate range of 0.001~0.03 s-1 in terms of the effect of temperature and strain rate on the superplastic properties of the alloy. Meanwhile, the strain rate sensitivity index m, stress index n and deformation activation energy Q of the alloy were acquired. The grain size, grain orientation and distribution in the area nearby the tensile fracture of the test alloy were characterized by electron back-scattered diffraction (EBSD) technique. The results show that with the increase of temperature the flow stress of Ti65 Ti-alloy is reduced and the elongation is elevated. With the reducing strain rate, the flow stress decreases, and the elongation first increases and then decreases. At the deformation temperature of 960 oC and strain rate of 0.003 s-1, the maximum elongation of the alloy reached 1108%, namely its superplasticity is the best. Correspondingly, the strain rate sensitivity index m is 0.42, the stress index n is 2.5, and the superplastic deformation activation energy Q is 393 kJ/mol, which illuminated that the predominate deformation mechanism is grain boundary sliding and dislocation sliding for Ti65 Ti-alloy. During the superplastic deformation process under different conditions, the Ti65 Ti-alloy undergoes significant dynamic recrystallization, generating uniformly distributed fine equiaxed grains. As the deformation temperature rising and the strain rate reducing, the degree of discontinuous dynamic recrystallization enhances. The grain size of Ti65 Ti-alloy increases with the increase of deformation temperature, and while increases first and then decreases with the increase of strain rate.

Key words:  metallic materials      Ti65 titanium alloy      superplasticity      deformation behavior      microstructure evolution      dynamic recrystallization     
Received:  24 July 2024     
ZTFLH:  TG132  
Fund: Aeronautical Science Foundation of China(2022Z047025001)
Corresponding Authors:  ZHANG Ning, Tel: 13811524062, E-mail: zn64112@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.319     OR     https://www.cjmr.org/EN/Y2025/V39/I7/489

ElementsAlSnZrMoSiTaNbWCTi
Content5.5~6.53.0~4.02.0~4.00.2~1.00.2~0.50.5~2.50.2~1.00.5~1.50.02~0.08Bal.
Table 1  Chemical composition of Ti65 titanium alloy (mass fraction, %)
Fig.1  Microstructure of Ti65 alloy sheet
Fig.2  Dimensions of tensile specimen(unit:mm)
Fig.3  Macroscopic images for elongated specimens under different temperatures at stain rate of 0.003 s-1 (a) and under different strain rates at temperature of 940 oC (b)
Fig.4  True stress-true strain curves of Ti65 alloy under different temperatures at stain rate of 0.003 s-1 (a) and under different strain rates at temperature of 940 oC (b)
Fig.5  Effect of different temperatures on peak stress (a) and elongation (b) of Ti65 alloy
Fig.6  Effect of different strain rates on peak stress (a) and elongation (b) of Ti65 alloy
Fig.7  lnσ-lnε˙ curve
Fig.8  lnσ-1/T curve
Fig.9  Grain morphology distributions of Ti65 alloy at different temperatures
(a) 900 oC (b) 920 oC (c) 940 oC (d) 960 oC
Fig.10  Misorientation distributions of Ti65 alloy at different temperatures
(a) original (b) 900 oC (c) 920 oC (d) 940 oC (e) 960 oC
Fig.11  Relationship curve between average grain sizes and temperatures
Fig.12  Grain morphology distributions of Ti65 alloy at different strain rates
(a) 0.001 s-1 (b) 0.01 s-1 (c) 0.03 s-1
Fig.13  Misorientation distribution of Ti65 alloy at different strain rates (a) 0.001 s-1, (b) 0.01 s-1, (c) 0.03 s-1
Fig.14  Relationship curve between average grain sizes and strain rates
[1] Liu Z G, Li P J, Yin X Y, et al. Effects of deformation parameters on the superplastic behavior and microstructure evolution of TA32 alloy [J]. Rare Metal Mat. Eng., 2018, 47(11): 3473
刘章光, 李培杰, 尹西岳 等. 变形参数对TA32合金的超塑性变形行为及微观组织演化的影响 [J]. 稀有金属材料与工程, 2018, 47(11): 3473
[2] Zhang T, Liu Y, Sanders D G, et al. Development of fine-grain size titanium 6Al-4V alloy sheet material for low temperature superplastic forming [J]. Mater. Sci. Eng., A, 2014, 608: 265
[3] Kaibyshev O A, Safiullin R V, Lutfullin R Y, et al. Advanced superplastic forming and diffusion bonding of titanium alloy [J]. Mater. Sci. Technol., 2013, 22: 343
[4] Wu D P, Wu Y, Chen M H, et al. High temperature flow behavior and microstructure evolution of TC31 titanium alloy sheets [J]. Rare Metal Mat. Eng., 2019, 48(12): 3901
吴迪鹏, 武 永, 陈明和 等. TC31钛合金板材高温流变行为及组织演变研究 [J]. 稀有金属材料与工程, 2019, 48(12): 3901
[5] Chen C, Chen M H, Xie L S, et al. Flow behavior of TA32 titanium alloy at high temperature and its constitutive model [J]. Rare Metal Mat. Eng., 2019, 48(3): 827
陈 灿, 陈明和, 谢兰生 等. TA32新型钛合金高温流变行为及本构模型研究 [J]. 稀有金属材料与工程, 2019, 48(3): 827
[6] Liu Y Y, Chen Z Y, Jin T N, et al. Present situation and prospect of 600 oC high-temperature Titanium alloys [J]. Mater. Rev., 2018, 32(11): 1863
刘莹莹, 陈子勇, 金头男 等. 600 ℃高温钛合金发展现状与展望 [J]. 材料导报, 2018, 32(11): 1863
[7] Wanjara P, Jahazi M, Monajati H, et al. Hot working behavior of near-α alloy IMI834 [J]. Mater. Sci. Eng., A, 2005, 396: 50
[8] Singh N, Singh V. Effect of temperature on tensile properties of near-α alloy Timetal 834 [J]. Mater. Sci. Eng., A, 2008, 485(1-2):130
[9] Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., A, 1996, 213(1-2): 103
[10] Huang D, Yang S L, Ma L, et al. Current research status and development of high-temperature Titanium alloys [J]. Iron Steel Vanadium Titanium, 2018, 39(1): 60
黄 栋, 杨绍利, 马 兰 等. 高温钛合金的研究现状及其发展 [J]. 钢铁钒钛, 2018, 39(1): 60
[11] Chen Z Y, Liu Y Y, Jin Y F, et al. Research on 650 oC high temperature titanium alloy technology for aero-engine [J]. Aeronaut. Manufact. Technol., 2019, 62(19): 22
陈子勇, 刘莹莹, 靳艳芳 等. 航空发动机用耐650 ℃高温钛合金研究现状与进展 [J]. 航空制造技术, 2019, 62(19): 22
[12] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective [J]. J. Aeronaut. Mater., 2014, 34(4): 1
王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
doi: 10.11868/j.issn.1005-5053.2014.4.001
[13] Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33(10): 785
doi: 10.11901/1005.3093.2019.110
吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织,织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33(10): 785
doi: 10.11901/1005.3093.2019.110
[14] Yue K. Study on microstructure and key high temperature mechanical properties of Ti65 alloy [D]. Hefei: University of Science and Technology of China, 2019.
岳 颗. Ti65合金显微组织及关键高温力学性能研究 [D]. 合肥: 中国科学技术大学, 2019
[15] Li P, Xu H F, Meng M, et al. Hot deformation behavior and constitutive equation of Ti65 titanium alloy [J]. J. Plast. Eng., 2024, 31(2): 120
李 萍, 许海峰, 孟 淼 等. Ti65钛合金热变形行为及本构方程 [J]. 塑性工程学报, 2024, 31(2): 120
[16] Feng Y, Chen Z Y, Jiang S M, et al. Effect of a NiCrAlSiY coating on cyclic oxidation and room temperature tensile properties of Ti65 alloy plate [J]. Chin. J. Mater. Res., 2023, 37(7): 523
doi: 10.11901/1005.3093.2022.145
冯 叶, 陈志勇, 姜肃猛 等. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响 [J]. 材料研究学报, 2023, 37(7): 523
[17] Lin D L, Sun F. Superplasticity in a large-grained TiAl alloy [J]. Intermetallics, 2004, 12(7-9):875
[18] Yang X K, Wang K S, Shi J M, et al. High temperature deformation behaviour of TC17 titanium alloy [J]. Rare Metal Mat. Eng., 2018, 47(9): 2895
杨晓康, 王快社, 史佳敏 等. TC17钛合金高温变形行为研究 [J]. 稀有金属材料与工程, 2018, 47(9): 2895
[19] Zhang P. Micro-orientation evolution and deformation mechanism of Al-Li alloy 5A90 during superplastic deformation [D]. Changsha: Zhong Nan University, 2014
张 盼. 5A90铝锂合金超塑性变形微取向演变及变形机理 [D]. 长沙: 中南大学, 2014
[20] Zhang K F, Yin D L, Wang G F, et al. Microstructure evolution and fracture behavior in superplastic deformation of hot-rolled AZ31 Mg alloy [J]. J. Aeronaut. Mater., 2005, 25(1): 5
张凯锋, 尹德良, 王国峰 等. 热轧AZ31镁合金超塑变形中的微观组织演变及断裂行为 [J]. 航空材料学报, 2005, 25(1): 5
[21] Zhang T Y. Study on fine-grain size titanium 6Al-4V alloy material for low temperature superplasticity [D]. Changsha: Zhong Nan University, 2014
张拓阳. 细晶TC4合金的低温超塑性变形研究 [D]. 长沙: 中南大学, 2014
[22] Li M Z, Bai C G, Zhang Z Q, et al. Hot Deformation Behavior of TC2 Titanium Alloy [J]. Chin. J. Mater. Res., 2020, 34(12): 892
李沐泽, 柏春光, 张志强 等. TC2钛合金的高温热变形行为 [J]. 材料研究学报, 2020, 34(12): 892
doi: 10.11901/1005.3093.2020.127
[23] Liang H Q, Guo H Z, Nan Y, et al. The identification of dynamic recrystallization type during hot deformation process [J]. Science China, 2014, 44(12): 1309
梁后权, 郭鸿镇, 南 洋 等. 高温变形过程中的动态再结晶类型识别 [J]. 中国科学, 2014, 44(12): 1309
[24] Lin Y C, He D G, Chen M S, et al. EBSD analysis of evolution of dynamic recrystallization grains and δ phase in a nickel-based superalloy during hot compressive deformation [J]. Mater. Des., 2016, 97: 13
[25] Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Prog. Mater. Sci., 2014, 60: 130
[26] McQueen H J. Development of dynamic recrystallization theory [J]. Mater. Sci. Eng., A, 2004, 387-389: 203
[27] Li D F, Guo S L, Peng H J, et al. The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy [J]. Mater. Des., 2011, 32: 696
[28] Wang Y, Shao W Z, Zhen L, et al. Flow behavior and microstructures of superalloy 718 during high temperature deformation [J]. Mater. Sci. Eng., A, 2008, 497: 479
[1] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[2] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[3] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[4] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
[5] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
[6] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[7] WANG Henglin, DING Hanlin, CHAI Feng, LUO Xiaobing, WANG Zijian, XIANG Chongchen. Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures[J]. 材料研究学报, 2025, 39(6): 401-412.
[8] YUAN Xinyu, SHI Fei, LIU Jingxiao, ZHANG Haojie, YANG Dayi, WANG Meiyu, REN Ming. Effect of Er2O3 Addition on Crystallization Behavior and Properties of Lithium Disilicate Glass Ceramics[J]. 材料研究学报, 2025, 39(6): 455-462.
[9] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[10] QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang, REN Yanjie, CHEN Jian. Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries[J]. 材料研究学报, 2025, 39(5): 389-400.
[11] WU Yucheng, ZUO Tong, TAN Xiaoyue, ZHU Xiaoyong, LIU Jiaqin. Oxidation Behavior of Self-passivated W-Cr-Zr Alloys as the First Wall Candidate Material[J]. 材料研究学报, 2025, 39(5): 343-352.
[12] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[13] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
[14] XU Congmin, SUN Shuwen, ZHU Wensheng, CHEN Zhiqiang, LI Chengchen. Influence of Ternary Compound Biocides on Corrosion Behavior of P110 Steel[J]. 材料研究学报, 2025, 39(4): 281-288.
[15] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
No Suggested Reading articles found!