|
|
Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution |
LI Feiyang1, LIU Zhihong1, QIAO Yanxin1, YANG Lanlan1, LU Daohua2, TANG Yanbing2( ) |
1.School of Materials Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China 2.Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, China |
|
Cite this article:
LI Feiyang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, TANG Yanbing. Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution. Chinese Journal of Materials Research, 2024, 38(3): 221-231.
|
Abstract The open-circuit potential, electrochemical impedance spectroscopy, potentiodynamic polarization, potentiostats polarization, current-time transient measurements, Mott-Schottky analysis, X-ray photoelectron spectroscopy (XPS), Electron Back-Scattered Diffraction(EBSD)methods were used to investigate the passivation behavior of 316L stainless steel fabricated by laser selective melted (SLM 316L) in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution. The results were compared with commercial rolled 316L stainless steel (R 316L). The results showed that the nucleation of passivation film follows continuous mechanism for the both stainless steel. However, the SLM 316L stainless steel has smaller grain size and higher grain boundary density than those of R 316L stainless steel. Therefore, the grow rate of passivation film is fast. The SLM 316L stainless steel took place transpassivation dissolution, while R 316L stainless steel took place pitting corrosion. The SLM 316L stainless steel has better corrosion resistance. The main reasons are the SLM 316L stainless steel has much more low angle grain boundaries without ferrite. Moreover, the passivation film of SLM 316L stainless steel has lower carrier density, lower ratio of O2-/OH-, lower content of NiO and higher content of Cr2O3 compared with R 316L stainless steel.
|
Received: 06 February 2023
|
|
Fund: National Key Research and Development Program of China(2018YFC0309100);Key Project of Jiangsu Province Key R&D Program(BE2022062) |
Corresponding Authors:
TANG Yanbing, Tel:(0511)88896820, E-mail: tyb2213@just.edu.cn
|
1 |
Bacciaglla A, Ceruti A, Liverani A, et al. Towards large parts manufacturing in additive technologies for aerospace and automotive applications [J]. Procedia Computer Science, 2022, 200: 1113
doi: 10.1016/j.procs.2022.01.311
|
2 |
Melenka G W, Cheung B K O, Schofield J S, et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3d printed structures [J]. Compos. Struct., 2016, 153: 866
doi: 10.1016/j.compstruct.2016.07.018
|
3 |
Daminabo S C, Goel S, Grammatikos S A, et al. Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems [J]. Mater. Today., Chem., 2020, 16: 100248
|
4 |
Guo Q, Zhao C, Qu M, et al. In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process [J]. Addit. Manuf., 2019, 28: 600
|
5 |
Li R, Niu P, Yuan T. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloy. Compd., 2018, 746: 125
doi: 10.1016/j.jallcom.2018.02.298
|
6 |
Lodhi M J K, Iams A D, Sikora E, et al. Microstructural features contributing to macroscopic corrosion: The role of oxide inclusions on the corrosion properties of additively manufactured 316L stainless steel [J]. Corros. Sci., 2022, 203: 110354
doi: 10.1016/j.corsci.2022.110354
|
7 |
Zhang Z, Yuan X, Zhao Z, et al. Electrochemical noise comparative study of pitting corrosion of 316L stainless steel fabricated by selective laser melting and wrought [J]. J. Electroanal. Chem., 2021, 894: 115351
doi: 10.1016/j.jelechem.2021.115351
|
8 |
Zhao C L, Bai Y, Zhang Y, et al. Influence of scanning strategy and building direction on microstructure and corrosion behaviour of selective laser melted 316L stainless steel [J]. Mater. Design., 2021, 209: 109999
|
9 |
Zhao Y, Xiong H, Li X, et al. Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment [J]. Corros. Commun., 2021, 2: 55
|
10 |
Laleh M, Hughes A E, Xu W, et al. Unexpected erosion-corrosion behaviour of 316L stainless steel produced by selective laser melting [J]. Corros. Sci., 2019, 155: 67
doi: 10.1016/j.corsci.2019.04.028
|
11 |
Trelewicz J R, Halada G P, Donaldson O K, et al. Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel [J]. Jom-Us., 2016, 68(7): 764
|
12 |
Geenen K, Roettger A, Theisen W, et al. Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting [J]. Mater. Corros., 2017, 68(7): 764
|
13 |
De Souza Silva E M F, Da Fonseca G S, Ferreira E A, et al. Microstructural and selective dissolution analysis of 316L austenitic stainless steel [J]. J. Mater. Res. Technol. J, 2021, 15: 4317
doi: 10.1016/j.jmrt.2021.10.009
|
14 |
Ha H Y, Park C J, Kwon H S, et al. Effects of non-metallic inclusions on the initiation of pitting corrosion in 11%Cr ferritic stainless steel examined by micro-droplet cell [J]. Corros. Sci., 2007, 49(3): 1266
doi: 10.1016/j.corsci.2006.08.017
|
15 |
Qu H, Li J, Zhang F, et al. Anisotropic cellular structure and texture microstructure of 316L stainless steel fabricated by selective laser melting via rotation scanning strategy [J]. Mater. Design., 2022, 215: 110454
|
16 |
Depionoy S. Influence of solidification conditions on chemical heterogeneities and dislocations patterning in additively manufactured 316L stainless steel [J]. Materialia, 2022, 24: 101472
doi: 10.1016/j.mtla.2022.101472
|
17 |
Zhao Y, Xiong H, Li X, et al. Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment [J]. Corros. Commun., 2021, 2: 55
|
18 |
El Shams, Din A M, Paul N J, et al. Oxide film thickening on the surface of metals in aqueous solutions: A critique of the theory of open-circuit potential transients [J]. Thin Solid Films, 1990, 189(2): 205
doi: 10.1016/0040-6090(90)90449-N
|
19 |
Fattah Alhosseini A, Saatchi A, Golozar M A, et al. The transpassive dissolution mechanism of 316L stainless steel [J], Electrochim. Acta., 2009, 54(13): 3645
doi: 10.1016/j.electacta.2009.01.040
|
20 |
Della Rovere C A, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corros. Sci., 2012, 57: 154
doi: 10.1016/j.corsci.2011.12.022
|
21 |
Hills G J, Peter L M, Scharifker B R, et al. The nucleation and growth of two-dimensional anodic films under galvanostatic conditions [J], J. Electroanal. Chem., 1981, 124(1): 247
doi: 10.1016/S0022-0728(81)80302-6
|
22 |
Gai X, Bai Y, Li J, et al. Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting [J]. Corros. Sci., 2018, 145: 80
doi: 10.1016/j.corsci.2018.09.010
|
23 |
Li T, Liu L, Zhang B, et al. Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles [J]. Corros. Sci., 2014, 85: 331
doi: 10.1016/j.corsci.2014.04.039
|
24 |
Pan C, Liu L, Li Y, et al. Passive film growth mechanism of nanocrystalline 304 stainless steel prepared by magnetron sputtering and deep rolling techniques [J]. Electrochim. Acta., 2011, 56: 7740
doi: 10.1016/j.electacta.2011.05.106
|
25 |
Shi T, Sun J Q, Wang X W, et al. Effect of trace water in ammonia on breaking passive film of stainless steel during gas nitriding [J]. Vacuum., 2022, 202: 111216
doi: 10.1016/j.vacuum.2022.111216
|
26 |
Hakiki N E, Belo M D C, Simoes A M P, et al. Semiconducting properties of passive films formed on stainless steels: Influence of the alloying elements [J]. J. Electrochem. Soc., 1998, 145(11): 3821
doi: 10.1149/1.1838880
|
27 |
Goodlet G, Faty S, Cardoso S, et al. The electronic properties of sputtered chromium and iron oxide films [J]. Corros. Sci., 2004, 46(6): 1479
doi: 10.1016/j.corsci.2003.09.022
|
28 |
Sander G, Babu A P, Gao X, et al. On the effect of build orientation and residual stress on the corrosion of 316L stainless steel prepared by selective laser melting [J]. Corros. Sci., 2021, 179:109146
doi: 10.1016/j.corsci.2020.109146
|
29 |
Azumi K, Ohstuka T, Sato N, et al. Mott-Schottky Plot of the Passive Film Formed on Iron in Neutral Borate and Phosphate Solutions [J]. J. Electrochem. Soc., 1987, 134(6):1352
doi: 10.1149/1.2100672
|
30 |
Carmezim M J, Simões A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci. 2005, 47(3): 581
doi: 10.1016/j.corsci.2004.07.002
|
31 |
Liu L, Li Y, Wang F, et al. Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions [J]. Electrochim. Acta., 2007, 52(7): 2392
doi: 10.1016/j.electacta.2006.08.070
|
32 |
Subba Rao R V, Wolff U, Baunack S, et al. Corrosion behaviour of the amorphous Mg65Y10Cu15Ag10 alloy [J]. Corros. Sci., 2003, 45(4): 817
doi: 10.1016/S0010-938X(02)00131-2
|
33 |
Gebert A, Wolff U, John A, et al. Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes [J]. Mat. Sci. Eng A-Struct., 2001, 299(1): 125
doi: 10.1016/S0921-5093(00)01401-5
|
34 |
Yue X, Yang Z, Huang L, et al. Passivation characteristics of ultra-thin 316L foil in NaCl solutions [J]. J. Mater. Sci. Technol., 2022, 127:192
doi: 10.1016/j.jmst.2022.01.043
|
35 |
Pardo A, Merino M C, Coy A E, et al. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4 [J]. Corros. Sci., 2008, 50(3): 780
doi: 10.1016/j.corsci.2007.11.004
|
36 |
Luo H, Su H, Li B, et al. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment [J]. Appl. Surf. Sci., 2018, 439: 232
doi: 10.1016/j.apsusc.2017.12.243
|
37 |
Cheng H, Luo H, Wang X, et al. Electrochemical corrosion and passive behavior of a new high-nitrogen austenitic stainless steel in chloride environment [J]. Mater. Chem. Phys., 2022, 292: 126837
doi: 10.1016/j.matchemphys.2022.126837
|
38 |
Liu C T, Wu J K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2007, 49(5): 2198
doi: 10.1016/j.corsci.2006.10.032
|
39 |
Li J, Wang Q, Yang Y, et al. Enhancing pitting corrosion resistance of severely cold-worked high nitrogen austenitic stainless steel by nitric acid passivation [J]. J. Electrochem. Soc., 2019, 166(13): 365
|
40 |
Lee J B, Yoon S I. Effect of nitrogen alloying on the semiconducting properties of passive films and metastable pitting susceptibility of 316L and 316LN stainless steels [J]. Mater. Chem. Phys., 2010, 122(1): 194
doi: 10.1016/j.matchemphys.2010.02.033
|
41 |
Liu L, Li Y, Wang F. Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5%NaCl [J]. Electrochim. Acta., 2007, 52(25): 7193
doi: 10.1016/j.electacta.2007.05.043
|
42 |
Abreu C M, Cristobal M J, Losada R, et al. The effect of Ni in the electrochemical properties of oxide layers grown on stainless steels [J]. Electrochim. Acta., 2006, 51(15): 2991
doi: 10.1016/j.electacta.2005.08.033
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|