Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (3): 221-231    DOI: 10.11901/1005.3093.2023.119
ARTICLES Current Issue | Archive | Adv Search |
Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution
LI Feiyang1, LIU Zhihong1, QIAO Yanxin1, YANG Lanlan1, LU Daohua2, TANG Yanbing2()
1.School of Materials Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2.Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Cite this article: 

LI Feiyang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, TANG Yanbing. Passivation Behavior of Laser Selective Melted 316L Stainless Steel in Sulphuric Acid Containing Chloride Ion Solution. Chinese Journal of Materials Research, 2024, 38(3): 221-231.

Download:  HTML  PDF(12250KB)  Mobile PDF(17183KB)
Export:  BibTeX | EndNote (RIS)      
Abstract  

The open-circuit potential, electrochemical impedance spectroscopy, potentiodynamic polarization, potentiostats polarization, current-time transient measurements, Mott-Schottky analysis, X-ray photoelectron spectroscopy (XPS), Electron Back-Scattered Diffraction(EBSD)methods were used to investigate the passivation behavior of 316L stainless steel fabricated by laser selective melted (SLM 316L) in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution. The results were compared with commercial rolled 316L stainless steel (R 316L). The results showed that the nucleation of passivation film follows continuous mechanism for the both stainless steel. However, the SLM 316L stainless steel has smaller grain size and higher grain boundary density than those of R 316L stainless steel. Therefore, the grow rate of passivation film is fast. The SLM 316L stainless steel took place transpassivation dissolution, while R 316L stainless steel took place pitting corrosion. The SLM 316L stainless steel has better corrosion resistance. The main reasons are the SLM 316L stainless steel has much more low angle grain boundaries without ferrite. Moreover, the passivation film of SLM 316L stainless steel has lower carrier density, lower ratio of O2-/OH-, lower content of NiO and higher content of Cr2O3 compared with R 316L stainless steel.

Key words:  materials failure and protection      passivation behavior      electrochemical tests      316L stainless steel     
Received:  06 February 2023     
ZTFLH:  TG172.5  
Fund: National Key Research and Development Program of China(2018YFC0309100);Key Project of Jiangsu Province Key R&D Program(BE2022062)
Corresponding Authors:  TANG Yanbing, Tel:(0511)88896820, E-mail: tyb2213@just.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.119     OR     https://www.cjmr.org/EN/Y2024/V38/I3/221

SiMnPSNiCrCMoFe
SLM 316L0.250.710.0070.00610.5816.410.0132.67Bal.
R 316L0.4471.1670.0310.00110.16216.8210.0192.102Bal.
Table 1  Chemical Composition of SLM 316L and R 316L (mass fraction, %)
Fig.1  X-ray diffraction pattern of SLM 316L and R 316L
Fig.2  Metallographic Structure of SLM 316L (a) and R 316L (b)
Fig.3  SEM Image of SLM 316L (a) and R 316L (b)
Fig.4  EBSD analysis diagram for two stainless steel materials (a, c, e) SLM 316L stainless steel, (b, d, f) R316L stainless steel
Fig.5  Open circuit potential of SLM 316L stainless steel and R 316L stainless steel
Fig.6  Potentiodynamic polarization curve of SLM 316L and R 316L in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution
Fig.7  Electrochemical impedance spectroscopic (EIS) of SLM 316L and R 316L in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution
Fig.8  Equivalent circuit diagram EIS of R 316L and SLM 316L
Rs / Ω·cm2CPE1 / F·cm-2nR1 / Ω·cm2C / F·cm-2R2 / Ω·cm2
SLM 316L12.894.21 × 10-50.876.31 × 104-1.97 × 10-52.33 × 105
R 316L13.674.53 × 10-50.865.88 × 104-2.44 × 10-51.71 × 105
Table 2  Equivalent circuit parameters for SLM 316L and R 316L
Fig.9  SLM 316L and R 316L in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution transient current versus time
Fig.10  transient experimental curve of SLM 316L stainless steel and R 316L stainless steel and check comparison with standard shape
Fig.11  Mott-Schottky curves of SLM 316L stainless steel and R 316L stainless steel in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution
Fig.12  Carrier density of passivation films formed in 0.05 mol/L H2SO4 + 0.2 mol/L NaCl solution for two stainless steels
Fig.13  Double logarithmic curves of current density with time for two stainless steels
Fig.14  XPS analysis results of the surface passivation films of two stainless steels (a, c, e, g, i) SLM 316L stainless steel, (b, d, f, h, j) R 316L stainless steel
Fig.15  Depth distribution of passivation film composition on the surface of two stainless steels (a, c) SLM 316L stainless steel and (b, d) R 316L stainless steel
1 Bacciaglla A, Ceruti A, Liverani A, et al. Towards large parts manufacturing in additive technologies for aerospace and automotive applications [J]. Procedia Computer Science, 2022, 200: 1113
doi: 10.1016/j.procs.2022.01.311
2 Melenka G W, Cheung B K O, Schofield J S, et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3d printed structures [J]. Compos. Struct., 2016, 153: 866
doi: 10.1016/j.compstruct.2016.07.018
3 Daminabo S C, Goel S, Grammatikos S A, et al. Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems [J]. Mater. Today., Chem., 2020, 16: 100248
4 Guo Q, Zhao C, Qu M, et al. In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process [J]. Addit. Manuf., 2019, 28: 600
5 Li R, Niu P, Yuan T. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloy. Compd., 2018, 746: 125
doi: 10.1016/j.jallcom.2018.02.298
6 Lodhi M J K, Iams A D, Sikora E, et al. Microstructural features contributing to macroscopic corrosion: The role of oxide inclusions on the corrosion properties of additively manufactured 316L stainless steel [J]. Corros. Sci., 2022, 203: 110354
doi: 10.1016/j.corsci.2022.110354
7 Zhang Z, Yuan X, Zhao Z, et al. Electrochemical noise comparative study of pitting corrosion of 316L stainless steel fabricated by selective laser melting and wrought [J]. J. Electroanal. Chem., 2021, 894: 115351
doi: 10.1016/j.jelechem.2021.115351
8 Zhao C L, Bai Y, Zhang Y, et al. Influence of scanning strategy and building direction on microstructure and corrosion behaviour of selective laser melted 316L stainless steel [J]. Mater. Design., 2021, 209: 109999
9 Zhao Y, Xiong H, Li X, et al. Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment [J]. Corros. Commun., 2021, 2: 55
10 Laleh M, Hughes A E, Xu W, et al. Unexpected erosion-corrosion behaviour of 316L stainless steel produced by selective laser melting [J]. Corros. Sci., 2019, 155: 67
doi: 10.1016/j.corsci.2019.04.028
11 Trelewicz J R, Halada G P, Donaldson O K, et al. Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel [J]. Jom-Us., 2016, 68(7): 764
12 Geenen K, Roettger A, Theisen W, et al. Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting [J]. Mater. Corros., 2017, 68(7): 764
13 De Souza Silva E M F, Da Fonseca G S, Ferreira E A, et al. Microstructural and selective dissolution analysis of 316L austenitic stainless steel [J]. J. Mater. Res. Technol. J, 2021, 15: 4317
doi: 10.1016/j.jmrt.2021.10.009
14 Ha H Y, Park C J, Kwon H S, et al. Effects of non-metallic inclusions on the initiation of pitting corrosion in 11%Cr ferritic stainless steel examined by micro-droplet cell [J]. Corros. Sci., 2007, 49(3): 1266
doi: 10.1016/j.corsci.2006.08.017
15 Qu H, Li J, Zhang F, et al. Anisotropic cellular structure and texture microstructure of 316L stainless steel fabricated by selective laser melting via rotation scanning strategy [J]. Mater. Design., 2022, 215: 110454
16 Depionoy S. Influence of solidification conditions on chemical heterogeneities and dislocations patterning in additively manufactured 316L stainless steel [J]. Materialia, 2022, 24: 101472
doi: 10.1016/j.mtla.2022.101472
17 Zhao Y, Xiong H, Li X, et al. Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment [J]. Corros. Commun., 2021, 2: 55
18 El Shams, Din A M, Paul N J, et al. Oxide film thickening on the surface of metals in aqueous solutions: A critique of the theory of open-circuit potential transients [J]. Thin Solid Films, 1990, 189(2): 205
doi: 10.1016/0040-6090(90)90449-N
19 Fattah Alhosseini A, Saatchi A, Golozar M A, et al. The transpassive dissolution mechanism of 316L stainless steel [J], Electrochim. Acta., 2009, 54(13): 3645
doi: 10.1016/j.electacta.2009.01.040
20 Della Rovere C A, Alano J H, Silva R, et al. Characterization of passive films on shape memory stainless steels [J]. Corros. Sci., 2012, 57: 154
doi: 10.1016/j.corsci.2011.12.022
21 Hills G J, Peter L M, Scharifker B R, et al. The nucleation and growth of two-dimensional anodic films under galvanostatic conditions [J], J. Electroanal. Chem., 1981, 124(1): 247
doi: 10.1016/S0022-0728(81)80302-6
22 Gai X, Bai Y, Li J, et al. Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting [J]. Corros. Sci., 2018, 145: 80
doi: 10.1016/j.corsci.2018.09.010
23 Li T, Liu L, Zhang B, et al. Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles [J]. Corros. Sci., 2014, 85: 331
doi: 10.1016/j.corsci.2014.04.039
24 Pan C, Liu L, Li Y, et al. Passive film growth mechanism of nanocrystalline 304 stainless steel prepared by magnetron sputtering and deep rolling techniques [J]. Electrochim. Acta., 2011, 56: 7740
doi: 10.1016/j.electacta.2011.05.106
25 Shi T, Sun J Q, Wang X W, et al. Effect of trace water in ammonia on breaking passive film of stainless steel during gas nitriding [J]. Vacuum., 2022, 202: 111216
doi: 10.1016/j.vacuum.2022.111216
26 Hakiki N E, Belo M D C, Simoes A M P, et al. Semiconducting properties of passive films formed on stainless steels: Influence of the alloying elements [J]. J. Electrochem. Soc., 1998, 145(11): 3821
doi: 10.1149/1.1838880
27 Goodlet G, Faty S, Cardoso S, et al. The electronic properties of sputtered chromium and iron oxide films [J]. Corros. Sci., 2004, 46(6): 1479
doi: 10.1016/j.corsci.2003.09.022
28 Sander G, Babu A P, Gao X, et al. On the effect of build orientation and residual stress on the corrosion of 316L stainless steel prepared by selective laser melting [J]. Corros. Sci., 2021, 179:109146
doi: 10.1016/j.corsci.2020.109146
29 Azumi K, Ohstuka T, Sato N, et al. Mott-Schottky Plot of the Passive Film Formed on Iron in Neutral Borate and Phosphate Solutions [J]. J. Electrochem. Soc., 1987, 134(6):1352
doi: 10.1149/1.2100672
30 Carmezim M J, Simões A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci. 2005, 47(3): 581
doi: 10.1016/j.corsci.2004.07.002
31 Liu L, Li Y, Wang F, et al. Influence of nanocrystallization on passive behavior of Ni-based superalloy in acidic solutions [J]. Electrochim. Acta., 2007, 52(7): 2392
doi: 10.1016/j.electacta.2006.08.070
32 Subba Rao R V, Wolff U, Baunack S, et al. Corrosion behaviour of the amorphous Mg65Y10Cu15Ag10 alloy [J]. Corros. Sci., 2003, 45(4): 817
doi: 10.1016/S0010-938X(02)00131-2
33 Gebert A, Wolff U, John A, et al. Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes [J]. Mat. Sci. Eng A-Struct., 2001, 299(1): 125
doi: 10.1016/S0921-5093(00)01401-5
34 Yue X, Yang Z, Huang L, et al. Passivation characteristics of ultra-thin 316L foil in NaCl solutions [J]. J. Mater. Sci. Technol., 2022, 127:192
doi: 10.1016/j.jmst.2022.01.043
35 Pardo A, Merino M C, Coy A E, et al. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4 [J]. Corros. Sci., 2008, 50(3): 780
doi: 10.1016/j.corsci.2007.11.004
36 Luo H, Su H, Li B, et al. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment [J]. Appl. Surf. Sci., 2018, 439: 232
doi: 10.1016/j.apsusc.2017.12.243
37 Cheng H, Luo H, Wang X, et al. Electrochemical corrosion and passive behavior of a new high-nitrogen austenitic stainless steel in chloride environment [J]. Mater. Chem. Phys., 2022, 292: 126837
doi: 10.1016/j.matchemphys.2022.126837
38 Liu C T, Wu J K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2007, 49(5): 2198
doi: 10.1016/j.corsci.2006.10.032
39 Li J, Wang Q, Yang Y, et al. Enhancing pitting corrosion resistance of severely cold-worked high nitrogen austenitic stainless steel by nitric acid passivation [J]. J. Electrochem. Soc., 2019, 166(13): 365
40 Lee J B, Yoon S I. Effect of nitrogen alloying on the semiconducting properties of passive films and metastable pitting susceptibility of 316L and 316LN stainless steels [J]. Mater. Chem. Phys., 2010, 122(1): 194
doi: 10.1016/j.matchemphys.2010.02.033
41 Liu L, Li Y, Wang F. Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5%NaCl [J]. Electrochim. Acta., 2007, 52(25): 7193
doi: 10.1016/j.electacta.2007.05.043
42 Abreu C M, Cristobal M J, Losada R, et al. The effect of Ni in the electrochemical properties of oxide layers grown on stainless steels [J]. Electrochim. Acta., 2006, 51(15): 2991
doi: 10.1016/j.electacta.2005.08.033
[1] LIU Tao, YIN Zhiqiang, LEI Jingfa, GE Yongsheng, SUN Hong. Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression[J]. 材料研究学报, 2023, 37(5): 391-400.
[2] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
[3] FENG Feng, YANG Bing, CHEN Dongdong, WANG Mingmeng, XIAO Shoune, YANG Guangwu, ZHU Tao. Effect of Defects on High Cycle Fatigue Properties of Selective Laser Melting 316L Stainless Steel[J]. 材料研究学报, 2023, 37(12): 907-914.
[4] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[5] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[6] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[7] JIN Dan, HAN Gaofeng, LONG Haoyue, JIN Kai. Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel[J]. 材料研究学报, 2022, 36(11): 845-849.
[8] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[10] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[11] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[12] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[13] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[14] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[15] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
No Suggested Reading articles found!