|
|
Corrosion Behavior of Cold Sprayed Zn15Al Alloy Coating on Q235 Carbon Steel in NaCl Aqueous Solution |
XU Long1( ), LI Jiwen2, CUI Chuanyu1, LU Qi1, YANG Hao1, ZHAO Congcong1 |
1.Materials Science and Technology Research Department, Ji Hua Laboratory, Foshan 528200, China 2.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
XU Long, LI Jiwen, CUI Chuanyu, LU Qi, YANG Hao, ZHAO Congcong. Corrosion Behavior of Cold Sprayed Zn15Al Alloy Coating on Q235 Carbon Steel in NaCl Aqueous Solution. Chinese Journal of Materials Research, 2024, 38(3): 208-220.
|
Abstract Cold-sprayed coatings Zn (CS-Zn) and Zn15Al alloy (CS-Zn15Al) were prepared on Q235 carbon steel plates via low-pressure cold spraying technique. The corrosion behavior of the coatings in 3.5% NaCl aqueous solution was assessed by means of electrochemical measurement of open circuit potential, electrochemical impedance and potentiodynamic polarization curves, as well as SEM with EDS, XRD. The results indicate that the CS-Zn coating undergoes severe corrosion during immersion, while the CS-Zn15Al coating corrodes at a slower rate and exhibits superior corrosion resistance. XRD results reveal that the dominant corrosion product of CS-Zn is ZnO, which possesses porous structural characteristics that disrupt the compactness of the corrosion product layer. Furthermore, its semiconductor properties decrease the charge transfer resistance, thereby accelerating the process of corrosion. In the contrast, as for CS-Zn15Al, the incorporation of Al facilitates the formation of protective corrosion products, namely Zn5(OH)8Cl2·H2O and layered double hydroxides Zn6Al2(OH)16CO3·4H2O. The shielding effect of CS-Zn15Al coating was significantly enhanced by this layer of corrosion products. Furthermore, electrochemical measurements demonstrate that the addition of Al reduces the corrosion potential of the coating, thereby enhancing its cathodic protection ability, and decreases the corrosion current density due to the generation of protective corrosion products. In conclusion, the addition of Al can synergistically enhance the anticorrosion performance and durability of the coating.
|
Received: 08 May 2023
|
|
Fund: Guangdong Basic and Applied Basic Research Foundation(2020A1515110982) |
Corresponding Authors:
XU Long, Tel:17755333229, E-mail: xulong@jihualab.com
|
1 |
Han E H, Chen J M, Su Y J, et al. Corrosion protection techniques of marine engineering structure and ship equipment—current status and future trend [J]. Mater. China, 2014, 33(2): 65
|
|
韩恩厚, 陈建敏, 宿彦京 等. 海洋工程结构与船舶的腐蚀防护——现状与趋势 [J]. 中国材料进展, 2014, 33(2): 65
|
2 |
Hou B R, Zhang D, Wang P. Marine corrosion and protection: current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31(12): 1326
|
|
侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31(12): 1326
|
3 |
Yu F X. Research of preparation and protective performance of Zn-Al alloy coating by low pressure cold spray technology [D]. Qingdao: Qingdao University of Science & Technology, 2014
|
|
于福旭. 低压冷喷涂锌铝合金涂层制备及防护性能研究 [D]. 青岛: 青岛科技大学, 2014
|
4 |
Bala N, Singh H, Karthikeyan J, et al. Cold spray coating process for corrosion protection: a review [J]. Surf. Eng., 2014, 30(6): 414
doi: 10.1179/1743294413Y.0000000148
|
5 |
Bai Y, Wang Z H, Li X B, et al. Corrosion behavior of Al(Y)-30%Al2O3 coating fabricated by low pressure cold spray technology [J]. Acta Metall. Sin., 2019, 55(10): 1338
|
|
白 杨, 王振华, 李相波 等. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为 [J]. 金属学报, 2019, 55(10): 1338
|
6 |
Li C J. The state-of-art of research and development on cold spraying in China [J]. Chin. Surf. Eng., 2009, 22(4): 5
|
|
李长久. 中国冷喷涂研究进展 [J]. 中国表面工程, 2009, 22(4): 5
|
7 |
Huang C J, Yin S, Li W Y, et al. Cold spray technology and its system: research status and prospect [J]. Surf. Technol., 2021, 50(7): 1
|
|
黄春杰, 殷 硕, 李文亚 等. 冷喷涂技术及其系统的研究现状与展望 [J]. 表面技术, 2021, 50(7): 1
|
8 |
Srikanth A, Basha G M T, Venkateshwarlu B. A brief review on cold spray coating process [J]. Mater. Today: Proc., 2020, 22: 1390
|
9 |
Liang Y L, Wang Z B, Zhang J B, et al. Formation of interfacial compounds and the effects on stripping behaviors of a cold-sprayed Zn-Al coating on interstitial-free steel [J]. Appl. Surf. Sci., 2015, 340: 89
doi: 10.1016/j.apsusc.2015.02.118
|
10 |
Wang K K, Wang S R, Xiong T Y, et al. Properties of Zn-Al-Mg-TiO2 coating prepared by cold spraying [J]. Surf. Coat. Technol., 2020, 387: 125549
doi: 10.1016/j.surfcoat.2020.125549
|
11 |
Lapushkina E, Yuan S, Mary N, et al. Contribution in optimization of Zn cold-sprayed coating dedicated to corrosion applications [J]. Surf. Coat. Technol., 2020, 400: 126193
doi: 10.1016/j.surfcoat.2020.126193
|
12 |
Lu J, Wang G H, Huang L Z, et al. State of the research of cold spraying anticorrosion coatings [J]. Surf. Technol., 2016, 45(9): 88
|
|
卢 静, 王光华, 黄乐之 等. 冷喷涂制备防腐涂层研究现状 [J]. 表面技术, 2016, 45(9): 88
|
13 |
McCune R C. The use of cold spray coating for corrosion protection [A]. Champagne V K. The Cold Spray Materials Deposition Process: Fundamentals and Applications [M]. Cambridge, England: Woodhead Publishing Limited, 2007: 302
|
14 |
Vinay G, Chavan N M, Kumar S, et al. Improved microstructure and properties of cold sprayed zinc coatings in the as sprayed condition [J]. Surf. Coat. Technol., 2022, 438: 128392
doi: 10.1016/j.surfcoat.2022.128392
|
15 |
Xu L, Liu F C, Han E H. Effect of PSS-PEDOT surface-modified Zn particles on anticorrosion performance of acrylic resin coating [J]. Chin. J. Mater. Res., 2019, 33(10): 776
doi: 10.11901/1005.3093.2019.205
|
|
徐 龙, 刘福春, 韩恩厚. PEDOT: PSS改性锌粉对冷涂锌涂层防护性能的影响 [J]. 材料研究学报, 2019, 33(10): 776
|
16 |
Liu Y W, Tan G B, Tang J H, et al. Enhanced corrosion and wear resistance of Zn-Ni/Cu-Al2O3 composite coating prepared by cold spray [J]. J. Solid State Electrochem., 2023, 27(2): 439
doi: 10.1007/s10008-022-05335-3
|
17 |
Lu X Q, Wang S R, Xiong T Y, et al. Anticorrosion properties of Zn-Al composite coating prepared by cold spraying [J]. Coatings, 2019, 9(3): 210
doi: 10.3390/coatings9030210
|
18 |
Lu X Q, Wang S R, Xiong T Y, et al. Anticorrosion properties of Zn-Al-Mg-ZnO composite coating prepared by cold spraying [J]. Surf. Rev. Lett., 2020, 27(9): 1950211
doi: 10.1142/S0218625X19502111
|
19 |
Zhao Z P, Tang J R, Tariq N U H, et al. Microstructure and corrosion behavior of cold-sprayed Zn-Al composite coating [J]. Coatings, 2020, 10(10): 931
doi: 10.3390/coatings10100931
|
20 |
Li H X, Li X B, Sun M X, et al. Corrosion resistance of cold-sprayed Zn-50Al coatings in seawater [J]. J. Chin. Soc. Corros. Prot., 2010, 30(1): 62
|
|
李海祥, 李相波, 孙明先 等. 冷喷涂Zn-50Al复合涂层在海水中的耐蚀性能 [J]. 中国腐蚀与防护学报, 2010, 30(1): 62
|
21 |
Wu H S, Zhang L Y, Liu C S, et al. Deposition of Zn-G/Al composite coating with excellent cathodic protection on low-carbon steel by low-pressure cold spraying [J]. J. Alloys Compd., 2020, 821: 153483
doi: 10.1016/j.jallcom.2019.153483
|
22 |
Zhu L Q, Xu B P, Zhou M X, et al. Fabrication and characterization of Al-Zn-Cu composite coatings with different cu contents by cold spraying [J]. Surf. Eng., 2020, 36(10): 1090
doi: 10.1080/02670844.2020.1748339
|
23 |
Bai Y, Wang Z H, Li X B, et al. Corrosion behavior of low pressure cold sprayed Zn-Ni composite coatings [J]. J. Alloys Compd., 2017, 719: 194
doi: 10.1016/j.jallcom.2017.05.134
|
24 |
Ma Q, Wang L D, Sun W, et al. Effect of chemical conversion induced by self-corrosion of zinc powders on enhancing corrosion protection performance of zinc-rich coatings [J]. Corros. Sci., 2022, 194: 109942
doi: 10.1016/j.corsci.2021.109942
|
25 |
Xu L, Liu F C, Wang Z Y, et al. The effect of surface modification of zinc particles with phosphoric acid on the corrosion resistance of cold galvanizing coatings [J]. Prog. Org. Coat., 2018, 114: 90
|
26 |
Cao Y H, Zheng D J, Zhang F, et al. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: a review [J]. J. Mater. Sci. Technol., 2022, 102: 232
doi: 10.1016/j.jmst.2021.05.078
|
27 |
Fang L, He Q Q, Hu J M, et al. Research advance in application of 2D layered double hydroxides (LDHs) in corrosion protection of metals [J]. Corros. Sci. Prot. Technol., 2019, 31(6): 665
|
|
方 露, 何青青, 胡吉明 等. 二维层状双金属氢氧化物(LDHs)在金属腐蚀防护中应用的研究进展 [J]. 腐蚀科学与防护技术, 2019, 31(6): 665
|
28 |
Azevedo M S, Allély C, Ogle K, et al. Corrosion mechanisms of Zn(Mg, Al) coated steel: the effect of HCO 3 - and NH 4 + ions on the intrinsic reactivity of the coating [J]. Electrochim. Acta, 2015, 153: 159
doi: 10.1016/j.electacta.2014.09.140
|
29 |
Persson D, Thierry D, LeBozec N, et al. In situ infrared reflection spectroscopy studies of the initial atmospheric corrosion of Zn-Al-Mg coated steel [J]. Corros. Sci., 2013, 72: 54
doi: 10.1016/j.corsci.2013.03.005
|
30 |
Xu L, Liu F C, Han E H, et al. Corrosion resistance and mechanism of one-component organic Zn15Al-rich coating [J]. Prog. Org. Coat., 2019, 132: 305
|
31 |
Duchoslav J, Steinberger R, Arndt M, et al. Evolution of the surface chemistry of hot dip galvanized Zn-Mg-Al and Zn coatings on steel during short term exposure to sodium chloride containing environments [J]. Corros. Sci., 2015, 91: 311
doi: 10.1016/j.corsci.2014.11.033
|
32 |
Prosek T, Hagström J, Persson D, et al. Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability [J]. Corros. Sci., 2016, 110: 71
doi: 10.1016/j.corsci.2016.04.022
|
33 |
Prosek T, Persson D, Stoulil J, et al. Composition of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions [J]. Corros. Sci., 2014, 86: 231
doi: 10.1016/j.corsci.2014.05.016
|
34 |
Zhang Z Y, Zhang J, Zhao X Y, et al. Effects of al-mg on the microstructure and phase distribution of Zn-Al-Mg coatings [J]. Metals, 2022, 13(1): 46
doi: 10.3390/met13010046
|
35 |
Hosking N C, Ström M A, Shipway P H, et al. Corrosion resistance of zinc-magnesium coated steel [J]. Corros. Sci., 2007, 49(9): 3669
doi: 10.1016/j.corsci.2007.03.032
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|