Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (3): 208-220    DOI: 10.11901/1005.3093.2023.254
ARTICLES Current Issue | Archive | Adv Search |
Corrosion Behavior of Cold Sprayed Zn15Al Alloy Coating on Q235 Carbon Steel in NaCl Aqueous Solution
XU Long1(), LI Jiwen2, CUI Chuanyu1, LU Qi1, YANG Hao1, ZHAO Congcong1
1.Materials Science and Technology Research Department, Ji Hua Laboratory, Foshan 528200, China
2.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

XU Long, LI Jiwen, CUI Chuanyu, LU Qi, YANG Hao, ZHAO Congcong. Corrosion Behavior of Cold Sprayed Zn15Al Alloy Coating on Q235 Carbon Steel in NaCl Aqueous Solution. Chinese Journal of Materials Research, 2024, 38(3): 208-220.

Download:  HTML  PDF(23025KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cold-sprayed coatings Zn (CS-Zn) and Zn15Al alloy (CS-Zn15Al) were prepared on Q235 carbon steel plates via low-pressure cold spraying technique. The corrosion behavior of the coatings in 3.5% NaCl aqueous solution was assessed by means of electrochemical measurement of open circuit potential, electrochemical impedance and potentiodynamic polarization curves, as well as SEM with EDS, XRD. The results indicate that the CS-Zn coating undergoes severe corrosion during immersion, while the CS-Zn15Al coating corrodes at a slower rate and exhibits superior corrosion resistance. XRD results reveal that the dominant corrosion product of CS-Zn is ZnO, which possesses porous structural characteristics that disrupt the compactness of the corrosion product layer. Furthermore, its semiconductor properties decrease the charge transfer resistance, thereby accelerating the process of corrosion. In the contrast, as for CS-Zn15Al, the incorporation of Al facilitates the formation of protective corrosion products, namely Zn5(OH)8Cl2·H2O and layered double hydroxides Zn6Al2(OH)16CO3·4H2O. The shielding effect of CS-Zn15Al coating was significantly enhanced by this layer of corrosion products. Furthermore, electrochemical measurements demonstrate that the addition of Al reduces the corrosion potential of the coating, thereby enhancing its cathodic protection ability, and decreases the corrosion current density due to the generation of protective corrosion products. In conclusion, the addition of Al can synergistically enhance the anticorrosion performance and durability of the coating.

Key words:  material failure and protection      zinc alloy coatings      electrochemical impedance spectroscopy      cold spraying     
Received:  08 May 2023     
ZTFLH:  TG174  
Fund: Guangdong Basic and Applied Basic Research Foundation(2020A1515110982)
Corresponding Authors:  XU Long, Tel:17755333229, E-mail: xulong@jihualab.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.254     OR     https://www.cjmr.org/EN/Y2024/V38/I3/208

Fig.1  Morphologies of the Zn (a) and Zn15Al (b) powders observed by SEM backscattering mode (the inset shows the secondary electron image), and the size distribution of Zn (c) and Zn15Al powders (d)
SampleAlFeSiPbCdZn
Zn0.05210.02530.03950.00310.0029Bal.
Zn15Al14.7520.12510.08950.00310.0029Bal.
Table 1  Chemical composition of the Zn and Zn15Al alloy powders (%,mass fraction)
ElementCMnSiSPFe
Content≤ 0.12≤ 0.50≤ 0.30≤ 0.04≤ 0.03Bal.
Table 2  Chemical composition of Q235 mild steel substrate (%, mass fraction)
Fig.2  Cross-sectional morphologies of the CS-Zn coating (a) coating layer (b) coating/substrate interface, and the corresponding distribution of elements (c) Zn and (d) O
Fig.3  Cross-sectional morphologies of the CS-Zn15Al coating (a) coating layer (b) coating/substrate interface and the corresponding distribution of elements (c) Zn, (d) Al and (e) O
Fig.4  XRD pattern of as-deposited CS-Zn and CS-Zn15Al coatings
Fig.5  Evolution of open circuit potential (a) and low frequency impedance modulus (b) with different immersion time
Fig.6  Cross-sectional morphologies of CS-Zn coating and corresponding elements distribution after 4416 h immersion
Fig.7  Cross-sectional morphologies of CS-Zn15Al coating and corresponding elements distribution after 4416 h immersion
Fig.8  Phase composition characterization of outer (a) and inner (b) layer of corrosion products on of CS-Zn and CS-Zn15Al coating
Fig.9  SEM morphology of outer layer (a, b, e, f) and inner layer (c, d, g, h) of corrosion products
Element1#2#3#4#5#
Zn63.268.164.660.762.2
O36.131.925.133.521.7
Cl0.7-10.33.415.4
Al---2.40.7
Table 3  Chemical composition analysis of different positions by EDS (mass fraction, %)
Fig.10  Potentiodynamic polarization curves of CS-Zn and CS-Zn15Al coatings at different immersion time (a) 1 h, (b) 17 d, (c) 184 d, and (d) after the removal of surface corrosion products
Fig.11  The evolution of the fitted results for the measured potentiodynamic polarization curves at different immersion times
Fig.12  Evolution of the Nyquist plots of CS-Zn (a) and CS-Zn15Al (b) with different immersion times
Fig.13  Evolution of Bode plots and phase angle of CS-Zn (a, b) and CS-Zn15Al (c, d) with different immersion times
Fig.14  The equivalent circuits used to fit the EIS experimental data obtained at different exposure times (a) initial corrosion stage (b) corrosion stage with corrosion products (c) final corrosion stage for CS-Zn (d) corrosion stage with Warburg impedance (e) final corrosion stage for CS-Zn15Al
t/ hRs/ Ω·cm2CPE1 / S·s n ·cm-2n1Rc/ Ω·cm2CPE2 / S·s n ·cm-2n2Rct/ Ω·cm2CPE3n3RFe/ Ω·cm2ChiSq
13.41.37 × 10-20.42272.38.34 × 10-40.6943.1---8.16 × 10-4
723.57.54 × 10-40.4111353.38 × 10-40.7827.4---3.80 × 10-4
1443.66.44 × 10-40.6114692.20 × 10-40.8396.3---3.63 × 10-4
2403.81.13 × 10-30.3920122.92 × 10-40.76402.2---4.17 × 10-4
7203.52.64 × 10-40.8125509.46 × 10-40.581033---2.55 × 10-4
14404.11.23 × 10-50.6233035.37 × 10-40.86751.5---5.35 × 10-4
24004.82.53 × 10-30.6929543.68 × 10-30.72291.77.68 × 10-60.799.251.09 × 10-4
36484.72.76 × 10-30.7121981.53 × 10-30.7882.33.59 × 10-60.7713.931.23 × 10-4
44164.86.10 × 10-30.7414576.17 × 10-30.5745.12.33 × 10-50.5929.35.60 × 10-5
Table 4  Fitting results of CS-Zn during the immersion
t/ hRs/ Ω·cm2CPE1 / S·s n ·cm-2n1Rc/ Ω·cm2CPE2 / S·s n ·cm-2n2Rct/ Ω·cm2WCPE3 / S·s n ·cm-2n3RFe/ Ω·cm2ChiSq
13.42.12 × 10-40.6814079.55 × 10-40.656552----9.32 × 10-4
724.61.97 × 10-40.77321.51.48 × 10-30.623405----3.95 × 10-4
1443.32.73 × 10-40.75452.61.49 × 10-30.712614----5.63 × 10-4
2403.72.52 × 10-40.75439.62.54 × 10-30.6515472.5 × 10-3---5.08 × 10-4
7203.92.86 × 10-40.6921702.09 × 10-30.6910301.7 × 10-3---6.81 × 10-4
14404.11.32 × 10-40.5814201.76 × 10-40.7533571.5 × 10-3---8.70 × 10-5
24004.12.07 × 10-40.42361.52.91 × 10-40.666165----5.19 × 10-4
36484.75.40 × 10-40.56680.31.37 × 10-40.915290----5.19 × 10-4
44163.94.98 × 10-40.59389.23.11 × 10-40.824511-1.90 × 10-40.4143.82.28 × 10-4
Table 5  Fitting results of CS-Zn15Al during the immersion
1 Han E H, Chen J M, Su Y J, et al. Corrosion protection techniques of marine engineering structure and ship equipment—current status and future trend [J]. Mater. China, 2014, 33(2): 65
韩恩厚, 陈建敏, 宿彦京 等. 海洋工程结构与船舶的腐蚀防护——现状与趋势 [J]. 中国材料进展, 2014, 33(2): 65
2 Hou B R, Zhang D, Wang P. Marine corrosion and protection: current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31(12): 1326
侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31(12): 1326
3 Yu F X. Research of preparation and protective performance of Zn-Al alloy coating by low pressure cold spray technology [D]. Qingdao: Qingdao University of Science & Technology, 2014
于福旭. 低压冷喷涂锌铝合金涂层制备及防护性能研究 [D]. 青岛: 青岛科技大学, 2014
4 Bala N, Singh H, Karthikeyan J, et al. Cold spray coating process for corrosion protection: a review [J]. Surf. Eng., 2014, 30(6): 414
doi: 10.1179/1743294413Y.0000000148
5 Bai Y, Wang Z H, Li X B, et al. Corrosion behavior of Al(Y)-30%Al2O3 coating fabricated by low pressure cold spray technology [J]. Acta Metall. Sin., 2019, 55(10): 1338
白 杨, 王振华, 李相波 等. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为 [J]. 金属学报, 2019, 55(10): 1338
6 Li C J. The state-of-art of research and development on cold spraying in China [J]. Chin. Surf. Eng., 2009, 22(4): 5
李长久. 中国冷喷涂研究进展 [J]. 中国表面工程, 2009, 22(4): 5
7 Huang C J, Yin S, Li W Y, et al. Cold spray technology and its system: research status and prospect [J]. Surf. Technol., 2021, 50(7): 1
黄春杰, 殷 硕, 李文亚 等. 冷喷涂技术及其系统的研究现状与展望 [J]. 表面技术, 2021, 50(7): 1
8 Srikanth A, Basha G M T, Venkateshwarlu B. A brief review on cold spray coating process [J]. Mater. Today: Proc., 2020, 22: 1390
9 Liang Y L, Wang Z B, Zhang J B, et al. Formation of interfacial compounds and the effects on stripping behaviors of a cold-sprayed Zn-Al coating on interstitial-free steel [J]. Appl. Surf. Sci., 2015, 340: 89
doi: 10.1016/j.apsusc.2015.02.118
10 Wang K K, Wang S R, Xiong T Y, et al. Properties of Zn-Al-Mg-TiO2 coating prepared by cold spraying [J]. Surf. Coat. Technol., 2020, 387: 125549
doi: 10.1016/j.surfcoat.2020.125549
11 Lapushkina E, Yuan S, Mary N, et al. Contribution in optimization of Zn cold-sprayed coating dedicated to corrosion applications [J]. Surf. Coat. Technol., 2020, 400: 126193
doi: 10.1016/j.surfcoat.2020.126193
12 Lu J, Wang G H, Huang L Z, et al. State of the research of cold spraying anticorrosion coatings [J]. Surf. Technol., 2016, 45(9): 88
卢 静, 王光华, 黄乐之 等. 冷喷涂制备防腐涂层研究现状 [J]. 表面技术, 2016, 45(9): 88
13 McCune R C. The use of cold spray coating for corrosion protection [A]. Champagne V K. The Cold Spray Materials Deposition Process: Fundamentals and Applications [M]. Cambridge, England: Woodhead Publishing Limited, 2007: 302
14 Vinay G, Chavan N M, Kumar S, et al. Improved microstructure and properties of cold sprayed zinc coatings in the as sprayed condition [J]. Surf. Coat. Technol., 2022, 438: 128392
doi: 10.1016/j.surfcoat.2022.128392
15 Xu L, Liu F C, Han E H. Effect of PSS-PEDOT surface-modified Zn particles on anticorrosion performance of acrylic resin coating [J]. Chin. J. Mater. Res., 2019, 33(10): 776
doi: 10.11901/1005.3093.2019.205
徐 龙, 刘福春, 韩恩厚. PEDOT: PSS改性锌粉对冷涂锌涂层防护性能的影响 [J]. 材料研究学报, 2019, 33(10): 776
16 Liu Y W, Tan G B, Tang J H, et al. Enhanced corrosion and wear resistance of Zn-Ni/Cu-Al2O3 composite coating prepared by cold spray [J]. J. Solid State Electrochem., 2023, 27(2): 439
doi: 10.1007/s10008-022-05335-3
17 Lu X Q, Wang S R, Xiong T Y, et al. Anticorrosion properties of Zn-Al composite coating prepared by cold spraying [J]. Coatings, 2019, 9(3): 210
doi: 10.3390/coatings9030210
18 Lu X Q, Wang S R, Xiong T Y, et al. Anticorrosion properties of Zn-Al-Mg-ZnO composite coating prepared by cold spraying [J]. Surf. Rev. Lett., 2020, 27(9): 1950211
doi: 10.1142/S0218625X19502111
19 Zhao Z P, Tang J R, Tariq N U H, et al. Microstructure and corrosion behavior of cold-sprayed Zn-Al composite coating [J]. Coatings, 2020, 10(10): 931
doi: 10.3390/coatings10100931
20 Li H X, Li X B, Sun M X, et al. Corrosion resistance of cold-sprayed Zn-50Al coatings in seawater [J]. J. Chin. Soc. Corros. Prot., 2010, 30(1): 62
李海祥, 李相波, 孙明先 等. 冷喷涂Zn-50Al复合涂层在海水中的耐蚀性能 [J]. 中国腐蚀与防护学报, 2010, 30(1): 62
21 Wu H S, Zhang L Y, Liu C S, et al. Deposition of Zn-G/Al composite coating with excellent cathodic protection on low-carbon steel by low-pressure cold spraying [J]. J. Alloys Compd., 2020, 821: 153483
doi: 10.1016/j.jallcom.2019.153483
22 Zhu L Q, Xu B P, Zhou M X, et al. Fabrication and characterization of Al-Zn-Cu composite coatings with different cu contents by cold spraying [J]. Surf. Eng., 2020, 36(10): 1090
doi: 10.1080/02670844.2020.1748339
23 Bai Y, Wang Z H, Li X B, et al. Corrosion behavior of low pressure cold sprayed Zn-Ni composite coatings [J]. J. Alloys Compd., 2017, 719: 194
doi: 10.1016/j.jallcom.2017.05.134
24 Ma Q, Wang L D, Sun W, et al. Effect of chemical conversion induced by self-corrosion of zinc powders on enhancing corrosion protection performance of zinc-rich coatings [J]. Corros. Sci., 2022, 194: 109942
doi: 10.1016/j.corsci.2021.109942
25 Xu L, Liu F C, Wang Z Y, et al. The effect of surface modification of zinc particles with phosphoric acid on the corrosion resistance of cold galvanizing coatings [J]. Prog. Org. Coat., 2018, 114: 90
26 Cao Y H, Zheng D J, Zhang F, et al. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: a review [J]. J. Mater. Sci. Technol., 2022, 102: 232
doi: 10.1016/j.jmst.2021.05.078
27 Fang L, He Q Q, Hu J M, et al. Research advance in application of 2D layered double hydroxides (LDHs) in corrosion protection of metals [J]. Corros. Sci. Prot. Technol., 2019, 31(6): 665
方 露, 何青青, 胡吉明 等. 二维层状双金属氢氧化物(LDHs)在金属腐蚀防护中应用的研究进展 [J]. 腐蚀科学与防护技术, 2019, 31(6): 665
28 Azevedo M S, Allély C, Ogle K, et al. Corrosion mechanisms of Zn(Mg, Al) coated steel: the effect of HCO 3 - and NH 4 + ions on the intrinsic reactivity of the coating [J]. Electrochim. Acta, 2015, 153: 159
doi: 10.1016/j.electacta.2014.09.140
29 Persson D, Thierry D, LeBozec N, et al. In situ infrared reflection spectroscopy studies of the initial atmospheric corrosion of Zn-Al-Mg coated steel [J]. Corros. Sci., 2013, 72: 54
doi: 10.1016/j.corsci.2013.03.005
30 Xu L, Liu F C, Han E H, et al. Corrosion resistance and mechanism of one-component organic Zn15Al-rich coating [J]. Prog. Org. Coat., 2019, 132: 305
31 Duchoslav J, Steinberger R, Arndt M, et al. Evolution of the surface chemistry of hot dip galvanized Zn-Mg-Al and Zn coatings on steel during short term exposure to sodium chloride containing environments [J]. Corros. Sci., 2015, 91: 311
doi: 10.1016/j.corsci.2014.11.033
32 Prosek T, Hagström J, Persson D, et al. Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability [J]. Corros. Sci., 2016, 110: 71
doi: 10.1016/j.corsci.2016.04.022
33 Prosek T, Persson D, Stoulil J, et al. Composition of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions [J]. Corros. Sci., 2014, 86: 231
doi: 10.1016/j.corsci.2014.05.016
34 Zhang Z Y, Zhang J, Zhao X Y, et al. Effects of al-mg on the microstructure and phase distribution of Zn-Al-Mg coatings [J]. Metals, 2022, 13(1): 46
doi: 10.3390/met13010046
35 Hosking N C, Ström M A, Shipway P H, et al. Corrosion resistance of zinc-magnesium coated steel [J]. Corros. Sci., 2007, 49(9): 3669
doi: 10.1016/j.corsci.2007.03.032
[1] XU Congmin, ZHANG Jinrui, ZHU Wensheng, YANG Xing, YAO Pan, LI Xueli. Effect of D-amino Acids on Corrosion Behavior of Different Steels due to Mixed Bacteria[J]. 材料研究学报, 2023, 37(12): 924-932.
[2] TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise[J]. 材料研究学报, 2021, 35(7): 526-534.
[3] GUO Tieming, XU Xiujie, ZHANG Yanwen, SONG Zhitao, DONG Zhilin, JIN Yuhua. Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt[J]. 材料研究学报, 2020, 34(6): 434-442.
[4] DUAN Tigang, HUANG Guosheng, MA Li, PENG Wenshan, ZHANG Wei, XU Likun, LIN Zhifeng, HE Hua, BI Tieman. Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel[J]. 材料研究学报, 2020, 34(10): 777-783.
[5] XU Long,LIU Fuchun,HAN En-Hou. Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating[J]. 材料研究学报, 2019, 33(10): 776-784.
[6] Shengwen ZHONG, Huajun ZHANG, Wenli YAO, Qian ZHANG, Yukun FU, Xiaodong TANG. Preparation and Electrochemical Performance of LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12) Cathode Materials[J]. 材料研究学报, 2018, 32(7): 487-494.
[7] Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment[J]. 材料研究学报, 2018, 32(7): 533-540.
[8] Herong ZHOU, Wang YAO, Pengyang LIU, Jiayong DAN. Effect of Cyclic Condensation and Sulfur Dioxide on Corrosion Behavior of 7A04 Aluminum Alloy[J]. 材料研究学报, 2017, 31(5): 359-368.
[9] Luhai ZHOU, Xicheng WEI, Chunyan WANG, Jun LU, Wurong WANG. Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel[J]. 材料研究学报, 2017, 31(11): 833-838.
[10] Na WANG,Yinan ZHANG,Honghe LUAN,Jing ZHANG. Preparation and Anti-corrosion Properties of Waterborne Epoxy Coatings Containing Organic Microspheres[J]. 材料研究学报, 2017, 31(1): 1-8.
[11] ZHAO Shuyan, CHEN Junjun, LIU Fuchun, XU Song, KE Wei, HU Botao, JIE Ganxin. Effect of New Kinds of Sillitin on Performance of Polyurethane Coating for Electric Power Fittings[J]. 材料研究学报, 2016, 30(2): 108-114.
[12] Yueling GUO,En-Hou HAN,Jianqiu WANG. Short-term Oxidation Behavior of Domestic Forged and Solution Annealed 316LN Stainless Steel in High Temperature Pressurized Water[J]. 材料研究学报, 2015, 29(6): 401-409.
[13] Lei ZHANG,Sujun WU,Guojin SUN,Qingshen MA. Surface Grain Boundary Characteristics and Electrochemical Behavior of Hot Rolled High Ni High Strength Steel[J]. 材料研究学报, 2014, 28(1): 67-74.
[14] LIANG Yongchun ZHAO Shuyan NIE Ming LIU Fuchun LIN Jiedong HAN EnHou. Influence of Curing Agents on Anti-corrosion Properties of Nanocomposite Zinc-rich Coatings[J]. 材料研究学报, 2012, 26(6): 652-660.
[15] LIU Guangming YANG Xiaodong LIN Jiyue TIAN Jihong. Influence of MTES Content on the Properties of Al2O3/Organosilicone/SiO2 Hybrid Coatings[J]. 材料研究学报, 2012, 26(4): 402-407.
No Suggested Reading articles found!