|
|
Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel |
JIN Dan( ), HAN Gaofeng, LONG Haoyue, JIN Kai |
School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China |
|
Cite this article:
JIN Dan, HAN Gaofeng, LONG Haoyue, JIN Kai. Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel. Chinese Journal of Materials Research, 2022, 36(11): 845-849.
|
Abstract Low cycle fatigue experiments for 316L stainless steel were carried out under circular loading and different strain ranges at 600℃. The microstructures near the fatigue fracture were observed by transmission electron microscope (TEM). The path correlation and amplitude correlation of dislocation structure and the path correlation of dynamic strain aging (DSA) were investigated based on the experimental results. The results show that at room temperature and 600℃, the planar slip is significant under uniaxial loading and the choroid dislocation structure formed. However, the equiaxed cellular dislocation structures are exhibited under circular loading, which reduces the deformation resistance of the material significantly. For equivalent strain range 1.0%, the fatigue life under circular loading is 81% lower than that of the uniaxial loading at 600℃. At the same time, the minimum equivalent strain range required to form a cellular dislocation structure under the circular loading is lower than that of the uniaxial loading. At 600℃, the DSA effect is more complete under circular loading, and the maximum stress drop for equivalent strain range 1.0% increases by 680% compared with that under uniaxial loading. The DSA phenomenon is more evident in the compression stage, and the sawtooth type gradually transitions from type A, type B to type C.
|
Received: 13 August 2021
|
|
Fund: National Natural Science Foundation of China(11102119);Education Department of Liaoning Province(LJKZ0437) |
About author: JIN Dan, Tel: 13609880376, E-mail: jindan76@163.com
|
1 |
Wang C, Liu T G, Zhu P, et al. Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing [J]. Mater. Sci. Eng A. Struct. Mater, 2020, 796(7): 140006
doi: 10.1016/j.msea.2020.140006
|
2 |
Farrahi G H, Minai K, Bahai H. Fretting fatigue behavior of 316L stainless steel under combined loading conditions [J]. Int J Fatigue, 2019, 128: 105206
doi: 10.1016/j.ijfatigue.2019.105206
|
3 |
Zhang M, Sun C N, Zhang X, et al. High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L: Fracture behaviour and stress-based modelling [J]. Int J Fatigue, 2018, 121: 252
doi: 10.1016/j.ijfatigue.2018.12.016
|
4 |
Kumar P, Jayaraj R, Suryawanshi J, et al. McKinnell, U. Ramamurty. Fatigue strength of additively manufactured 316L austenitic stainless steel [J]. Acta. Mater, 2020, 199: 225
doi: 10.1016/j.actamat.2020.08.033
|
5 |
Carneiro L, Wang X G, Jiang Y A. Cyclic deformation and fatigue behavior of 316L stainless steel processed by surface mechanical rolling treatment [J]. Int J Fatigue, 2020, 134: 105469
|
6 |
Yang X J, Gao Q, He G Q, et al. On nonproportional cyclic properties of type 316 stainless steels [J]. Acta. Metall. Sin, 1996(01): 15
|
|
杨显杰, 高 庆, 何国求 等. 316不锈钢的非比例循环特性 [J]. 金属学报, 1996(01): 15
|
7 |
Kim D W, Chang J H, Ryu W S. Evaluation of the creep-fatigue damage mechanism of Type 316L and Type 316LN stainless steel [J]. Intl. J. Press. Vsl. Piping, 2007, 85(6): 378
|
8 |
Gan L, Wu H, Zhong Z. Low-cycle fatigue life prediction for 316L stainless steel using strain-based model [J]. J. Mech. Str, 2020, 42(02): 313
|
|
甘 磊, 吴 昊, 仲 政. 基于应变的316L不锈钢低周疲劳寿命预测方法 [J]. 机械强度, 2020, 42(02): 313
|
9 |
He G Q, Chen C S, Gao Q, et al. Definition of non-proportionality of strain path based on microstructures analysis [J]. Acta. Metall. Sin, 2003(07): 715
|
|
何国求, 陈成澍, 高 庆 等. 基于微结构分析定义应变路径非比例度 [J]. 金属学报, 2003(07): 715
|
10 |
Tan J B, Wu X Q, Han E H. Review on relationship between dynamic strain aging and environmentally assisted cracking of structural materials used in nuclear power plants [J]. J. Chin. Soc. Corrosion. Prot, 2012, 32(06): 437
|
|
谭季波, 吴欣强, 韩恩厚. 动态应变时效对核电材料环境致裂影响的研究现状与进展 [J]. 中国腐蚀与防护学报, 2012, 32(06): 437
|
11 |
Li B B, Zheng Y, Zhao J W, et al. Cyclic deformation behavior and dynamic strain aging of 316LN stainless steel under low cycle fatigue loadings at 550℃ [J]. Mater. Sci. Eng A. Struct. Mater, 2021, 818(141411)
|
12 |
Nagesha A, Kannan R, Parameswaran P, et al. A comparative study of isothermal and thermomechanical fatigue on type 316L(N) austenitic stainless steel [J]. Mater. Sci. Eng A. Struct. Mater, 2010, 527(21): 5969
doi: 10.1016/j.msea.2010.05.082
|
13 |
Hong S G, Lee S B. Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel [J]. J Nuc Mater, 2004, 328(2): 232
|
14 |
Hong S G, Lee K O, Lee S B. Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel [J]. International Journal of Fatigue, 2005, 27(10-12): 1420
|
15 |
Chen L, Jiang J L. Investigation about low cycle fatigue behavior of 316l steel at room and elevated temperature [J]. J. Mech. Str, 2005, 27(1): 121
|
|
陈 凌, 蒋家羚. 316L钢室温和中温环境下应力控制的低周疲劳行为研究 [J]. 机械强度, 2005, 27(1): 121
|
16 |
Jiang H F, Chen X D, Fan Z C. Dynamic strain aging in stress controlled creep-fatigue tests of 316L stainless steelunder different loading conditions [J]. J. Mechanical. Strength, 2009, 392(3): 494
|
17 |
Jin D, Zhang J Y, LI J H. Dynamic strain aging of 316l stainless steel under circular loading [J]. Acta. Arm, 2018, 39(03): 584
|
|
金 丹, 张江玉, 李江华. 316L不锈钢圆路径下的动态应变时效分析 [J]. 兵工学报, 2018, 39(03): 584
|
18 |
Jin D, Li J H, Tian D J. Dynamic strain aging of 316l stainless steel during uniaxial fatigue process at 600℃ [J]. Chin. J. Mater. Res, 2016, 30(07): 496
|
|
金 丹, 李江华, 田大将. 316L不锈钢单轴疲劳动态应变的时效分析 [J]. 材料研究学报, 2016, 30(07): 496
|
19 |
Ackermamm F, Kubin L P, Lepinoux J, et al. The dependence of dislocation microstructure on plastic strain amplitude in cyclically strained copper single crystals [J]. Acta. Metall, 1984, 32: 715
doi: 10.1016/0001-6160(84)90145-7
|
20 |
Li C Q, Xu D K, Han E H. Research Progress on the plastic Instability Phenomenon of Magnesium Alloys [J]. Mater. Chin, 2016, 35(11): 809
|
|
李传强, 许道奎, 韩恩厚. 镁合金塑性变形过程中锯齿屈服现象的研究进展 [J]. 中国材料进展, 2016, 35(11): 809
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|