Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (11): 845-849    DOI: 10.11901/1005.3093.2021.447
ARTICLES Current Issue | Archive | Adv Search |
Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel
JIN Dan(), HAN Gaofeng, LONG Haoyue, JIN Kai
School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
Cite this article: 

JIN Dan, HAN Gaofeng, LONG Haoyue, JIN Kai. Micromechanism of Fatigue Failure under Non-proportional Loading for 316L Stainless Steel. Chinese Journal of Materials Research, 2022, 36(11): 845-849.

Download:  HTML  PDF(1351KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low cycle fatigue experiments for 316L stainless steel were carried out under circular loading and different strain ranges at 600℃. The microstructures near the fatigue fracture were observed by transmission electron microscope (TEM). The path correlation and amplitude correlation of dislocation structure and the path correlation of dynamic strain aging (DSA) were investigated based on the experimental results. The results show that at room temperature and 600℃, the planar slip is significant under uniaxial loading and the choroid dislocation structure formed. However, the equiaxed cellular dislocation structures are exhibited under circular loading, which reduces the deformation resistance of the material significantly. For equivalent strain range 1.0%, the fatigue life under circular loading is 81% lower than that of the uniaxial loading at 600℃. At the same time, the minimum equivalent strain range required to form a cellular dislocation structure under the circular loading is lower than that of the uniaxial loading. At 600℃, the DSA effect is more complete under circular loading, and the maximum stress drop for equivalent strain range 1.0% increases by 680% compared with that under uniaxial loading. The DSA phenomenon is more evident in the compression stage, and the sawtooth type gradually transitions from type A, type B to type C.

Key words:  metallic materials      316L stainless steel      dynamic strain aging      circular loading      dislocation      sawtooth type     
Received:  13 August 2021     
ZTFLH:  TG142.71  
Fund: National Natural Science Foundation of China(11102119);Education Department of Liaoning Province(LJKZ0437)
About author:  JIN Dan, Tel: 13609880376, E-mail: jindan76@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.447     OR     https://www.cjmr.org/EN/Y2022/V36/I11/845

Fig.1  Shape and geometry of specimen
Fig.2  Semi-life hysteretic loops under circular loading for equivalent strain ranges 0.7% and 1.0%
Fig.3  Dislocation structure near fatigue fracture under equivalent strain range 1.0% (a) uniaxial path, RT[13], (b) uniaxial path, 600℃[7], (c) circular path, RT[9]
Fig.4  Dislocation structure near fatigue fracture for different equivalent strain ranges (a) (b) ?εeq=0.7%, (c) (d) ?εeq=1.0%
1 Wang C, Liu T G, Zhu P, et al. Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing [J]. Mater. Sci. Eng A. Struct. Mater, 2020, 796(7): 140006
doi: 10.1016/j.msea.2020.140006
2 Farrahi G H, Minai K, Bahai H. Fretting fatigue behavior of 316L stainless steel under combined loading conditions [J]. Int J Fatigue, 2019, 128: 105206
doi: 10.1016/j.ijfatigue.2019.105206
3 Zhang M, Sun C N, Zhang X, et al. High cycle fatigue and ratcheting interaction of laser powder bed fusion stainless steel 316L: Fracture behaviour and stress-based modelling [J]. Int J Fatigue, 2018, 121: 252
doi: 10.1016/j.ijfatigue.2018.12.016
4 Kumar P, Jayaraj R, Suryawanshi J, et al. McKinnell, U. Ramamurty. Fatigue strength of additively manufactured 316L austenitic stainless steel [J]. Acta. Mater, 2020, 199: 225
doi: 10.1016/j.actamat.2020.08.033
5 Carneiro L, Wang X G, Jiang Y A. Cyclic deformation and fatigue behavior of 316L stainless steel processed by surface mechanical rolling treatment [J]. Int J Fatigue, 2020, 134: 105469
6 Yang X J, Gao Q, He G Q, et al. On nonproportional cyclic properties of type 316 stainless steels [J]. Acta. Metall. Sin, 1996(01): 15
杨显杰, 高 庆, 何国求 等. 316不锈钢的非比例循环特性 [J]. 金属学报, 1996(01): 15
7 Kim D W, Chang J H, Ryu W S. Evaluation of the creep-fatigue damage mechanism of Type 316L and Type 316LN stainless steel [J]. Intl. J. Press. Vsl. Piping, 2007, 85(6): 378
8 Gan L, Wu H, Zhong Z. Low-cycle fatigue life prediction for 316L stainless steel using strain-based model [J]. J. Mech. Str, 2020, 42(02): 313
甘 磊, 吴 昊, 仲 政. 基于应变的316L不锈钢低周疲劳寿命预测方法 [J]. 机械强度, 2020, 42(02): 313
9 He G Q, Chen C S, Gao Q, et al. Definition of non-proportionality of strain path based on microstructures analysis [J]. Acta. Metall. Sin, 2003(07): 715
何国求, 陈成澍, 高 庆 等. 基于微结构分析定义应变路径非比例度 [J]. 金属学报, 2003(07): 715
10 Tan J B, Wu X Q, Han E H. Review on relationship between dynamic strain aging and environmentally assisted cracking of structural materials used in nuclear power plants [J]. J. Chin. Soc. Corrosion. Prot, 2012, 32(06): 437
谭季波, 吴欣强, 韩恩厚. 动态应变时效对核电材料环境致裂影响的研究现状与进展 [J]. 中国腐蚀与防护学报, 2012, 32(06): 437
11 Li B B, Zheng Y, Zhao J W, et al. Cyclic deformation behavior and dynamic strain aging of 316LN stainless steel under low cycle fatigue loadings at 550℃ [J]. Mater. Sci. Eng A. Struct. Mater, 2021, 818(141411)
12 Nagesha A, Kannan R, Parameswaran P, et al. A comparative study of isothermal and thermomechanical fatigue on type 316L(N) austenitic stainless steel [J]. Mater. Sci. Eng A. Struct. Mater, 2010, 527(21): 5969
doi: 10.1016/j.msea.2010.05.082
13 Hong S G, Lee S B. Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel [J]. J Nuc Mater, 2004, 328(2): 232
14 Hong S G, Lee K O, Lee S B. Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel [J]. International Journal of Fatigue, 2005, 27(10-12): 1420
15 Chen L, Jiang J L. Investigation about low cycle fatigue behavior of 316l steel at room and elevated temperature [J]. J. Mech. Str, 2005, 27(1): 121
陈 凌, 蒋家羚. 316L钢室温和中温环境下应力控制的低周疲劳行为研究 [J]. 机械强度, 2005, 27(1): 121
16 Jiang H F, Chen X D, Fan Z C. Dynamic strain aging in stress controlled creep-fatigue tests of 316L stainless steelunder different loading conditions [J]. J. Mechanical. Strength, 2009, 392(3): 494
17 Jin D, Zhang J Y, LI J H. Dynamic strain aging of 316l stainless steel under circular loading [J]. Acta. Arm, 2018, 39(03): 584
金 丹, 张江玉, 李江华. 316L不锈钢圆路径下的动态应变时效分析 [J]. 兵工学报, 2018, 39(03): 584
18 Jin D, Li J H, Tian D J. Dynamic strain aging of 316l stainless steel during uniaxial fatigue process at 600℃ [J]. Chin. J. Mater. Res, 2016, 30(07): 496
金 丹, 李江华, 田大将. 316L不锈钢单轴疲劳动态应变的时效分析 [J]. 材料研究学报, 2016, 30(07): 496
19 Ackermamm F, Kubin L P, Lepinoux J, et al. The dependence of dislocation microstructure on plastic strain amplitude in cyclically strained copper single crystals [J]. Acta. Metall, 1984, 32: 715
doi: 10.1016/0001-6160(84)90145-7
20 Li C Q, Xu D K, Han E H. Research Progress on the plastic Instability Phenomenon of Magnesium Alloys [J]. Mater. Chin, 2016, 35(11): 809
李传强, 许道奎, 韩恩厚. 镁合金塑性变形过程中锯齿屈服现象的研究进展 [J]. 中国材料进展, 2016, 35(11): 809
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!