Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (3): 187-196    DOI: 10.11901/1005.3093.2023.130
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus
LIU Chenye1,2, LUO Tianjiao1(), LI Yingju1, FENG Xiaohui1, HUANG Qiuyan1, ZHENG Ce1, ZHU Cheng1, YANG Yuansheng1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus. Chinese Journal of Materials Research, 2024, 38(3): 187-196.

Download:  HTML  PDF(30285KB)  Mobile PDF(31012KB)
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aiming at the demand of high stiffness light metal structure materials, high specific modulus Mg-alloys Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi (x = 0, 3, 5, 7) (%, mass fraction) (namely ZA84-xLi) were designed and prepared, as well as and then optimized. When the Li content in the alloy is 3.14% and 5.37%, the alloy matrix is composed mainly of single-phase α-Mg, while the skeletal-like Mg32(Al, Zn)49 phase is precipitated near grain boundaries, and there is a granular-like Mg5Al2Zn2 phase and Al2Mn phase inside the grain; when the Li content is 7.57%, the alloy matrix is ​​mainly a dual-phase structure α-Mg + β-Li. After the addition of Li, many eutectic structures are formed near the grain boundaries, which are composed of α-Mg phase and lamellar-like AlLi phase, and with the increase of Li content, the amount of lamellar-like AlLi phase also gradually increases. The yield strength of the alloy increases gradually with the increase of Li content, while the tensile strength remains basically unchanged. The elastic modulus of the alloy increases first and then decreases with the increase of Li content. For the as-cast ZA84-5Li, the elastic modulus can reach 51.89 GPa, which is 7 GPa higher than that of pure Mg, while the mechanical properties of the alloy basically keeps unchanged. Namely, the yield strength, tensile strength and density is 141 MPa, 189 MPa and 1.71 g/cm3 respectively for the cast alloy.

Key words:  metallic materials      magnesium alloy      second phases reinforcement      microstructure      elastic modulus     
Received:  15 February 2023     
ZTFLH:  TG146.22  
Fund: National Key R&D Program of China(2021YFB3701100)
Corresponding Authors:  LUO Tianjiao, Tel:(024)23971109,13514252330, E-mail: tjluo@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.130     OR     https://www.cjmr.org/EN/Y2024/V38/I3/187

AlloysZnAlCuMnLiMg
ZA84-0Li8.634.250.560.57-Bal.
ZA84-3Li8.244.240.550.443.14Bal.
ZA84-5Li8.094.220.520.455.37Bal.
ZA84-7Li8.734.330.530.147.57Bal.
Table 1  Chemical composition of ZA84-xLi alloys (mass fraction, %)
Fig.1  XRD patterns of ZA84-xLi alloys
Fig.2  Microstructure of ZA84-xLi alloys (a) x = 0; (b) x = 3; (c) x = 5; (d) x = 7
Fig.3  Average grain size of ZA84-xLi alloys
Fig.4  SEM images of the ZA84-xLi alloys (a) x = 0; (b) x = 3; (c) x = 5; (d) x = 7
Fig.5  Content of the second phase in ZA84-xLi alloys
Fig.6  EDS analyses of the ZA84-5Li alloy (a) SEM image; (b) A; (c) B; (d) C
Fig.7  SIMS of ZA84-5Li alloy (a) Li; (b) Mg; (c) Al; (d) Zn; (e) Cu; (f) Mn
Fig.8  TEM of ZA84-3Li alloy (a) Bright field phase; (b) Mg; (c) Zn; (d) Al; (e) Cu; (f) Mn
Fig.9  Density of ZA84-xLi alloys
Fig.10  Hardness of ZA84-xLi alloys
Fig11  Tensile property of ZA84-xLi alloys
Fig.12  Metallographic photographs of tensile fracture longitude sections of the ZA84-xLi alloys (a) x = 0; (b) x = 3; (c) x = 5; (d) x = 7
Fig.13  SEM images of the stretched fracture morphology of the ZA84-xLi alloys (a) x = 0; (b) x = 3; (c) x = 5; (d) x = 7
Fig.14  Elasticity modulus of ZA84-xLi alloys
AlloysElastic modulus / GPa
α-Mgβ-LiGrain boundary phase
ZA84-0Li49.57-50.30
ZA84-3Li53.03-53.12
ZA84-5Li54.99-57.18
ZA84-7Li56.9669.10-
Table 2  Matrix and grain boundary second phase elastic modulus of ZA84-xLi alloys
Fig.15  Nanoindentation analysis of the ZA84-xLi alloys (a) load-displacement curve; (b) elastic modulus of α-Mg matrix
1 Wu R Z, Yan Y, Wang G, et al. Recent progress in magnesium-lithium alloys [J]. Int. Mater. Rev., 2014, 60(2): 65
doi: 10.1179/1743280414Y.0000000044
2 Ding H B, Liu Q, Zhou H T, et al. Effect of thermal-mechanical processing on microstructure and mechanical properties of duplex-phase Mg-8Li-3Al-0.4Y alloy [J]. T. Nonferr. Metal. Soc., 2017, 27(12): 2587
doi: 10.1016/S1003-6326(17)60286-3
3 Ji Q, Wang Y, Wu R Z, et al. High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes [J]. Mater. Charact., 2020, 160: 110
4 Zhang X S, Chen Y J, Hu J L. Recent advances in the development of aerospace materials [J]. Prog. Aerosp. Sci., 2018, 97: 22
doi: 10.1016/j.paerosci.2018.01.001
5 Frankel G S. Magnesium alloys: Ready for the road [J]. Nat. Mater., 2015, 14(12): 1189
doi: 10.1038/nmat4453 pmid: 26480230
6 Chen X Y, Zhang Y, Cong M Q, et al. Effect of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg-8Li-3Al-(1, 2, 3)Sn alloys [J]. T. Nonferr. Metal. Soc., 2020, 30(8): 2079
doi: 10.1016/S1003-6326(20)65362-6
7 Villuendas A, Jorba J, Roca A. The role of precipitates in the behavior of Young's modulus in aluminum alloys [J]. Metall. Mater. Trans. A, 2014, 45(9): 3857
doi: 10.1007/s11661-014-2328-8
8 Huang W, Li D. Effects of isothermal heat-treatment at 300oC on microstructure and mechanical properties of AZ91D die cast magnesium alloy [J]. Trans. Mater. Heat Treat., 2006, (2): 37
黄 巍, 李 荻. 300℃等温处理时间对AZ91D压铸镁合金组织和性能的影响 [J]. 材料热处理学报, 2006, (2): 37
9 Wang C Y, Wu K, Wang J J, et al. A study of microstructures and properties of extruded MB15 magnesium alloy [J]. J. Heilongjiang Inst. Techn., 2013, 27(4): 68
王春艳, 吴 昆, 王佳杰 等. 挤压态MB15镁合金的显微组织与力学性能研究 [J]. 黑龙江工程学院学报(自然科学版), 2013, 27(4): 68
10 Xi Y L, Zhang W X, Chai D L, et al. Fabricating process and mechanical properties of SiC particulates-reinforced magnesium matrix composites by powder metallurgy [J]. Hot Work. Techn., 2001, 5: 24
郗雨林, 张文兴, 柴东琅 等. 粉末冶金法制备SiC颗粒增强镁基复合材料工艺及性能的研究 [J]. 热加工工艺, 2001, 5: 24
11 Li J G. Study on the interfacial and hybrid behaviors of magnesium matrix composites reinforced with magnesium borate whisker [D]. Shanghai: Shanghai Jiao Tong University, 2013
李建国. 硼酸镁晶须增强镁基复合材料界面及混杂行为研究 [D]. 上海: 上海交通大学, 2013
12 Zhang X M, Hu J L, Ye L Y, et al. Effects of Si addition on microstructure and mechanical properties of Mg-8Gd-4Y-Nd-Zr alloy [J]. Mater. Design, 2013, 43: 74
doi: 10.1016/j.matdes.2012.06.022
13 Tu T, Chen X H, Zhao C Y, et al. A simultaneous increase of elastic modulus and ductility by Al and Li additions in Mg-Gd-Zn-Zr-Ag alloy [J]. Mater. Sci. Eng. A, 2020, 771: 138576
doi: 10.1016/j.msea.2019.138576
14 Zhao D, Chen X H, Yuan Y, et al. Development of a novel Mg-Y-Zn-Al-Li alloy with high elastic modulus and damping capacity [J]. Mater. Sci. Eng. A, 2020, 790: 139744
doi: 10.1016/j.msea.2020.139744
15 Shi H L, Xu C, Hu X S, et al. Improving the Young's modulus of Mg via alloying and compositing-A short review [J]. J. Magnesium Alloy., 2022, 10(8): 2009
doi: 10.1016/j.jma.2022.07.011
16 Yang M B, Zhu Y, Pan F S, et al. Effects of Minor Sr on As-Cast Microstructure and Mechanical Properties of ZA84 Magnesium Alloy [J]. T. Nonferr. Metal. Soc., 2010, 20: s306
doi: 10.1016/S1003-6326(10)60488-8
17 Yuan G Y, Kato H, Amiya K, et al. Excellent creep properties of Mg-Zn-Cu-Gd-based alloy strengthened by quasicrystals and Laves phases [J]. J. Mater. Res., 2005, 20(5): 1278
doi: 10.1557/JMR.2005.0156
18 Liu Y, Yuan G Y, Lu C, et al. Microstructure and mechanical properties of Mg-Zn-Gd-based alloys strengthened with quasicrystal and Laves phase [J]. T. Nonferr. Metal. Soc., 2007, 17: s353
19 Kaya A A, Uzan P, Eliezer D, et al. Electron microscopical investigation of as cast AZ91D alloy [J]. Mater. Sci. Techn., 2000, 16(9): 1001
doi: 10.1179/026708300101508955
20 Kham S A, Miyashita Y, Mutoh Y, et al. Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys [J]. Mater. Sci. Eng. A, 2006, 420: 315
doi: 10.1016/j.msea.2006.01.091
21 Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. J. Mater. Res., 2004, 19: 3
doi: 10.1557/jmr.2004.19.1.3
22 Rahulan N, Gopalan S, Kumaran S. Mechanical behavior of Mg-Li-Al alloys [J]. Mater. Today: Proc., 2018, 5: 17935
23 Peng X, Sun J W, Liu H J, et al. Microstructure and corrosion behavior of as-homogenized and as-extruded Mg-xLi-3Al-2Zn-0.5Y alloys (x = 4, 8, 12) [J]. T. Nonferr. Metal. Soc., 2022, 32: 134
doi: 10.1016/S1003-6326(21)65783-7
24 Sun Y H, Wang R C, Peng C Q, et al. Effects of Sn and Y on the microstructure, texture, and mechanical properties of as-extruded Mg-5Li-3Al-2Zn alloy [J]. Mater. Sci. Eng. A, 2018, 733: 429
doi: 10.1016/j.msea.2018.05.030
25 Zhang H J. Microalloying effects of rare element of Nd, Y on the Mg-6Zn-1Mn magnesium alloy [D]. Chongqing: Chongqing University, 2015
张红菊. 稀土Nd、Y对Mg-6Zn-1Mn镁合金微合金化效应的研究 [D]. 重庆: 重庆大学, 2015
26 Peng X, Liu W C, Wu G H. Effects of Li content on microstructure and mechanical properties of as-cast Mg-xLi-3Al-2Zn-0.5Y alloys [J]. T. Nonferr. Metal. Soc., 2022, 32: 838
doi: 10.1016/S1003-6326(22)65837-0
27 Hu W Y, Le Q Z, Zhang Z Q, et al. Effect of lithium on microstructures and mechanical properties of GW82K magnesium alloy [J]. Foundry, 2017, 66(5): 445
胡文义, 乐启炽, 张志强 等. Li对GW82K镁合金组织与性能的影响 [J]. 铸造, 2017, 66(5): 445
28 Ma T, Xu C J, Feng G W, et al. Effect of Li content on microstructure and properties of Mg-Li alloy [J]. Foundry Technology, 2016, 37(5): 863
马 涛, 徐春杰, 冯港雯 等. Li含量对Mg-Li合金组织与性能的影响 [J]. 铸造技术, 2016, 37(5): 863
29 Dorin T, Vahid A, Lamb J. Fundamentals of Aluminium Metallurgy: Chapter11, Aluminium Lithium Alloys [M]. Woodhead publishing series in metals and surface engineering, 2018: 378
30 Han J, Su X M, Jin Z H, et al. Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects [J]. Scripta Mater., 2011, 64(8): 693
doi: 10.1016/j.scriptamat.2010.11.034
31 Xu Y L, Wang L, Huang M, et al. The Effect of Solid Solute and Precipitate Phase on Young's Modulus of Binary Mg-RE Alloys [J]. Adv. Eng. Mater., 2018, 20(10): 1800271
doi: 10.1002/adem.v20.10
[1] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[2] QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. 材料研究学报, 2024, 38(3): 197-207.
[3] YIN Yanchao, LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei. Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature[J]. 材料研究学报, 2024, 38(3): 232-240.
[4] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[5] ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2024, 38(2): 111-120.
[6] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[7] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[8] LIU Zhenhuan, LI Yonghan, LIU Yang, WANG Pei, LI Dianzhong. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. 材料研究学报, 2024, 38(2): 130-140.
[9] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[10] YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2024, 38(1): 23-32.
[11] LV Tao, LIU Fang, LIU Chang, DONG Dexiu, ZHANG Weihong, CAI Guixi. Influence of Microstructure on Ultrasonic Attenuation of Forged GH907 Alloy Ring for Aero Engine Turbine Casing[J]. 材料研究学报, 2024, 38(1): 14-22.
[12] QIN Yanli, ZHAO Guangpu, ZHANG Hao, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting[J]. 材料研究学报, 2024, 38(1): 43-50.
[13] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[14] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[15] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
No Suggested Reading articles found!