|
|
Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus |
LIU Chenye1,2, LUO Tianjiao1( ), LI Yingju1, FENG Xiaohui1, HUANG Qiuyan1, ZHENG Ce1, ZHU Cheng1, YANG Yuansheng1 |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus. Chinese Journal of Materials Research, 2024, 38(3): 187-196.
|
Abstract Aiming at the demand of high stiffness light metal structure materials, high specific modulus Mg-alloys Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi (x = 0, 3, 5, 7) (%, mass fraction) (namely ZA84-xLi) were designed and prepared, as well as and then optimized. When the Li content in the alloy is 3.14% and 5.37%, the alloy matrix is composed mainly of single-phase α-Mg, while the skeletal-like Mg32(Al, Zn)49 phase is precipitated near grain boundaries, and there is a granular-like Mg5Al2Zn2 phase and Al2Mn phase inside the grain; when the Li content is 7.57%, the alloy matrix is mainly a dual-phase structure α-Mg + β-Li. After the addition of Li, many eutectic structures are formed near the grain boundaries, which are composed of α-Mg phase and lamellar-like AlLi phase, and with the increase of Li content, the amount of lamellar-like AlLi phase also gradually increases. The yield strength of the alloy increases gradually with the increase of Li content, while the tensile strength remains basically unchanged. The elastic modulus of the alloy increases first and then decreases with the increase of Li content. For the as-cast ZA84-5Li, the elastic modulus can reach 51.89 GPa, which is 7 GPa higher than that of pure Mg, while the mechanical properties of the alloy basically keeps unchanged. Namely, the yield strength, tensile strength and density is 141 MPa, 189 MPa and 1.71 g/cm3 respectively for the cast alloy.
|
Received: 15 February 2023
|
|
Fund: National Key R&D Program of China(2021YFB3701100) |
Corresponding Authors:
LUO Tianjiao, Tel:(024)23971109,13514252330, E-mail: tjluo@imr.ac.cn
|
1 |
Wu R Z, Yan Y, Wang G, et al. Recent progress in magnesium-lithium alloys [J]. Int. Mater. Rev., 2014, 60(2): 65
doi: 10.1179/1743280414Y.0000000044
|
2 |
Ding H B, Liu Q, Zhou H T, et al. Effect of thermal-mechanical processing on microstructure and mechanical properties of duplex-phase Mg-8Li-3Al-0.4Y alloy [J]. T. Nonferr. Metal. Soc., 2017, 27(12): 2587
doi: 10.1016/S1003-6326(17)60286-3
|
3 |
Ji Q, Wang Y, Wu R Z, et al. High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes [J]. Mater. Charact., 2020, 160: 110
|
4 |
Zhang X S, Chen Y J, Hu J L. Recent advances in the development of aerospace materials [J]. Prog. Aerosp. Sci., 2018, 97: 22
doi: 10.1016/j.paerosci.2018.01.001
|
5 |
Frankel G S. Magnesium alloys: Ready for the road [J]. Nat. Mater., 2015, 14(12): 1189
doi: 10.1038/nmat4453
pmid: 26480230
|
6 |
Chen X Y, Zhang Y, Cong M Q, et al. Effect of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg-8Li-3Al-(1, 2, 3)Sn alloys [J]. T. Nonferr. Metal. Soc., 2020, 30(8): 2079
doi: 10.1016/S1003-6326(20)65362-6
|
7 |
Villuendas A, Jorba J, Roca A. The role of precipitates in the behavior of Young's modulus in aluminum alloys [J]. Metall. Mater. Trans. A, 2014, 45(9): 3857
doi: 10.1007/s11661-014-2328-8
|
8 |
Huang W, Li D. Effects of isothermal heat-treatment at 300oC on microstructure and mechanical properties of AZ91D die cast magnesium alloy [J]. Trans. Mater. Heat Treat., 2006, (2): 37
|
|
黄 巍, 李 荻. 300℃等温处理时间对AZ91D压铸镁合金组织和性能的影响 [J]. 材料热处理学报, 2006, (2): 37
|
9 |
Wang C Y, Wu K, Wang J J, et al. A study of microstructures and properties of extruded MB15 magnesium alloy [J]. J. Heilongjiang Inst. Techn., 2013, 27(4): 68
|
|
王春艳, 吴 昆, 王佳杰 等. 挤压态MB15镁合金的显微组织与力学性能研究 [J]. 黑龙江工程学院学报(自然科学版), 2013, 27(4): 68
|
10 |
Xi Y L, Zhang W X, Chai D L, et al. Fabricating process and mechanical properties of SiC particulates-reinforced magnesium matrix composites by powder metallurgy [J]. Hot Work. Techn., 2001, 5: 24
|
|
郗雨林, 张文兴, 柴东琅 等. 粉末冶金法制备SiC颗粒增强镁基复合材料工艺及性能的研究 [J]. 热加工工艺, 2001, 5: 24
|
11 |
Li J G. Study on the interfacial and hybrid behaviors of magnesium matrix composites reinforced with magnesium borate whisker [D]. Shanghai: Shanghai Jiao Tong University, 2013
|
|
李建国. 硼酸镁晶须增强镁基复合材料界面及混杂行为研究 [D]. 上海: 上海交通大学, 2013
|
12 |
Zhang X M, Hu J L, Ye L Y, et al. Effects of Si addition on microstructure and mechanical properties of Mg-8Gd-4Y-Nd-Zr alloy [J]. Mater. Design, 2013, 43: 74
doi: 10.1016/j.matdes.2012.06.022
|
13 |
Tu T, Chen X H, Zhao C Y, et al. A simultaneous increase of elastic modulus and ductility by Al and Li additions in Mg-Gd-Zn-Zr-Ag alloy [J]. Mater. Sci. Eng. A, 2020, 771: 138576
doi: 10.1016/j.msea.2019.138576
|
14 |
Zhao D, Chen X H, Yuan Y, et al. Development of a novel Mg-Y-Zn-Al-Li alloy with high elastic modulus and damping capacity [J]. Mater. Sci. Eng. A, 2020, 790: 139744
doi: 10.1016/j.msea.2020.139744
|
15 |
Shi H L, Xu C, Hu X S, et al. Improving the Young's modulus of Mg via alloying and compositing-A short review [J]. J. Magnesium Alloy., 2022, 10(8): 2009
doi: 10.1016/j.jma.2022.07.011
|
16 |
Yang M B, Zhu Y, Pan F S, et al. Effects of Minor Sr on As-Cast Microstructure and Mechanical Properties of ZA84 Magnesium Alloy [J]. T. Nonferr. Metal. Soc., 2010, 20: s306
doi: 10.1016/S1003-6326(10)60488-8
|
17 |
Yuan G Y, Kato H, Amiya K, et al. Excellent creep properties of Mg-Zn-Cu-Gd-based alloy strengthened by quasicrystals and Laves phases [J]. J. Mater. Res., 2005, 20(5): 1278
doi: 10.1557/JMR.2005.0156
|
18 |
Liu Y, Yuan G Y, Lu C, et al. Microstructure and mechanical properties of Mg-Zn-Gd-based alloys strengthened with quasicrystal and Laves phase [J]. T. Nonferr. Metal. Soc., 2007, 17: s353
|
19 |
Kaya A A, Uzan P, Eliezer D, et al. Electron microscopical investigation of as cast AZ91D alloy [J]. Mater. Sci. Techn., 2000, 16(9): 1001
doi: 10.1179/026708300101508955
|
20 |
Kham S A, Miyashita Y, Mutoh Y, et al. Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys [J]. Mater. Sci. Eng. A, 2006, 420: 315
doi: 10.1016/j.msea.2006.01.091
|
21 |
Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. J. Mater. Res., 2004, 19: 3
doi: 10.1557/jmr.2004.19.1.3
|
22 |
Rahulan N, Gopalan S, Kumaran S. Mechanical behavior of Mg-Li-Al alloys [J]. Mater. Today: Proc., 2018, 5: 17935
|
23 |
Peng X, Sun J W, Liu H J, et al. Microstructure and corrosion behavior of as-homogenized and as-extruded Mg-xLi-3Al-2Zn-0.5Y alloys (x = 4, 8, 12) [J]. T. Nonferr. Metal. Soc., 2022, 32: 134
doi: 10.1016/S1003-6326(21)65783-7
|
24 |
Sun Y H, Wang R C, Peng C Q, et al. Effects of Sn and Y on the microstructure, texture, and mechanical properties of as-extruded Mg-5Li-3Al-2Zn alloy [J]. Mater. Sci. Eng. A, 2018, 733: 429
doi: 10.1016/j.msea.2018.05.030
|
25 |
Zhang H J. Microalloying effects of rare element of Nd, Y on the Mg-6Zn-1Mn magnesium alloy [D]. Chongqing: Chongqing University, 2015
|
|
张红菊. 稀土Nd、Y对Mg-6Zn-1Mn镁合金微合金化效应的研究 [D]. 重庆: 重庆大学, 2015
|
26 |
Peng X, Liu W C, Wu G H. Effects of Li content on microstructure and mechanical properties of as-cast Mg-xLi-3Al-2Zn-0.5Y alloys [J]. T. Nonferr. Metal. Soc., 2022, 32: 838
doi: 10.1016/S1003-6326(22)65837-0
|
27 |
Hu W Y, Le Q Z, Zhang Z Q, et al. Effect of lithium on microstructures and mechanical properties of GW82K magnesium alloy [J]. Foundry, 2017, 66(5): 445
|
|
胡文义, 乐启炽, 张志强 等. Li对GW82K镁合金组织与性能的影响 [J]. 铸造, 2017, 66(5): 445
|
28 |
Ma T, Xu C J, Feng G W, et al. Effect of Li content on microstructure and properties of Mg-Li alloy [J]. Foundry Technology, 2016, 37(5): 863
|
|
马 涛, 徐春杰, 冯港雯 等. Li含量对Mg-Li合金组织与性能的影响 [J]. 铸造技术, 2016, 37(5): 863
|
29 |
Dorin T, Vahid A, Lamb J. Fundamentals of Aluminium Metallurgy: Chapter11, Aluminium Lithium Alloys [M]. Woodhead publishing series in metals and surface engineering, 2018: 378
|
30 |
Han J, Su X M, Jin Z H, et al. Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects [J]. Scripta Mater., 2011, 64(8): 693
doi: 10.1016/j.scriptamat.2010.11.034
|
31 |
Xu Y L, Wang L, Huang M, et al. The Effect of Solid Solute and Precipitate Phase on Young's Modulus of Binary Mg-RE Alloys [J]. Adv. Eng. Mater., 2018, 20(10): 1800271
doi: 10.1002/adem.v20.10
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|