Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (3): 197-207    DOI: 10.11901/1005.3093.2023.205
ARTICLES Current Issue | Archive | Adv Search |
Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures
QI Kaili1,3, HU Dejiang2, GAO Chong3, LIU Feng1,4, PANG Jianchao3(), SHAO Chenwei3, YANG Mengqi2, LI Shouxin3, ZHANG Zhefeng3
1.School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China
2.Maintenance and Test Branch, China Southern Power Grid Power Generation Co., Ltd., Guangzhou 511400, China
3.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4.Ji Hua Laboratory, Foshan 528200, China
Cite this article: 

QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures. Chinese Journal of Materials Research, 2024, 38(3): 197-207.

Download:  HTML  PDF(19999KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and notch tensile fracture morphologies at different stress concentration factors of the low alloy steel 35CrMo for the head cover bolts of the pump turbine of a storage power station were investigated by electron backscatter diffraction microscopy and scanning electron microscopy. The effects of tempering temperature on the relationship between tensile properties, damage mechanism and mechanical properties of 35CrMo steel were studied. The results show that the microstructures of tempered state at 150~200oC and quenched state are composed of lath martensite. After tempering at 400oC, the microstructure of tempered troostite is more uniform. The final fracture of the notched specimens is a mixture of ductile and brittle fracture. At the two stress concentration factors (Kt = 3, 5), the notch tensile strength has the same changing trend with the tempering temperature. With the tempering temperature increasing, the notch tensile strength first increases and then decreases. For Kt = 3, the highest tensile strength is 2626 MPa at tempering temperature of 150oC; when Kt = 5, the highest tensile strength is 2450 MPa at tempering temperature of 200oC. Notch sensitivity ratio (NSR) is greater than 1, that is, notch strengthening effect occurs after different tempering temperatures, and notch sensitivity tends to decrease with the increase of tempering temperature. With the increase of stress concentration factor, the notch strengthening effect of specimens treated at different tempering temperatures shows an increasing trend first and then a decreasing trend, and the notch strengthening efficiency was the most obvious when tempering at 400oC. Finally, based on the relationship between hardness and notch tensile strength, a fast prediction method of notch tensile strength was proposed, and the prediction error was less than 8%.

Key words:  metallic materials      low-alloy steel      tempering temperature      microstructure      notch tensile prediction     
Received:  30 March 2023     
ZTFLH:  TG142.1  
Fund: National Key Research and Development Program of China(2022YFB3708200);Science and Technology Project of Maintenance and Testing Branch, China Southern Power Grid Power Generation Co. Ltd(022200KK52180006)
Corresponding Authors:  PANG Jianchao, Tel:(024)83978879, E-mail: jcpang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.205     OR     https://www.cjmr.org/EN/Y2024/V38/I3/197

CSiCrMoMnPSFe
0.350.351.100.200.800.0040.0022Bal.
Table 1  Chemical composition of 35CrMo steel (mass fraction, %)
Fig.1  Schematic diagram of heat treatment process for the head cover bolt of 35CrMo steel
Fig.2  Dimension of notched tensile specimen (a) Kt = 3; (b) Kt = 5 (unit: mm)
Fig.3  EBSD microstructures of 35CrMo steel processed at different tempered temperatures (a) Q; (b) QT150; (c) QT200; (d) QT400
Heat-treatment proceduresQQT150QT200QT400
Kt = 32337262625092213
Kt = 52164230524502142
Table 2  Notch tensile strength of 35CrMo steel processed by different tempering temperatures (MPa)
Fig.4  Tensile stress-displacement curves for notched specimens of 35CrMo steel under different tempering temperatures (a) Kt = 3; (b) Kt = 5
Fig.5  Effect of tempering temperature on notch tensile strength of 35CrMo steel
Heat-treatment proceduresQQT150QT200QT400
Kt = 35.556.918.309.61
Kt = 55.258.126.588.92
Table 3  Percentage reduction of area of 35CrMo steel processed by different tempering temperatures (%)
Fig.6  Relationship between notch tensile strength and contraction percentage
Sampleσb / MPaσy / MPaZ / %A / %
Q1977138033.2010.80
QT1501952136442.7811.00
QT2001891148747.6612.05
QT4001566135251.4812.10
Table 4  Tensile properties for 35CrMo steel after tempering at different temperature[28]
Fig.7  Comparisons between notch and smooth tensile properties of 35CrMo steel after tempering at different temperature treatments (a) relationship between notch tensile strength and tensile strength of smooth specimens; (b) relationship between tensile notch sensitivity ratio and tensile strength of smooth specimens
Heat-treatment proceduresQQT150QT200QT400
Kt = 31.1821.3451.3271.413
Kt = 51.0951.1811.2961.368
Table 5  Notch sensitivity ratio of 35CrMo steel after tempering at different temperature
Heat-treatment proceduresQQT150QT200QT400
Kt = 313.234.532.741.3
Kt = 59.5018.129.636.8
Table 6  Percentage of notch tensile strength enhancement of 35CrMo steel processed by different tempering temperatures (%)
Fig.8  Effect of stress concentration factor on tensile properties of 35CrMo Steels under different tempering temperatures treatments (a) relationship between Kt and tensile strength; (b) relationship between Kt and NSR
Fig.9  Notch tensile fracture morphology of 35CrMo Steel after tempering at different temperature at Kt = 3 (a~c) Q; (d~f) QT150; (g~i) QT200; (j~l) QT400
Fig.10  Notch tensile fracture morphology of 35CrMo Steel after tempering at different temperature at Kt = 5 (a~c) Q; (d~f) QT150; (g~i) QT200; (j~l) QT400
Fig.11  Relationship between notch tensile strength and hardness of 35CrMo steel (a) σbN/HV vs. HV (Kt = 3); (b) σbN/HV vs. HV (Kt = 5); (c) σbN vs. HV (Kt = 3); (d) σbN vs. HV (Kt = 5)
Fig.12  Relationship between notch tensile strength and hardness of martensitic steel (a) σbN/HB vs. HB; (b) σbN vs. HB
1 Wang B Q, Chen L R, Chen X F. High Strength Bolt Connection [M]. Beijing: Metallurgical Industry Press, 1991: 8
王伯琴, 陈录如, 陈先峰. 高强度螺栓连接 [M]. 北京: 冶金工业出版社, 1991: 8
2 Wang Z W, Yang J W, Wang W, et al. Research on the flow-induced stress characteristics of head-cover bolts of a pump-turbine during turbine start-up [J]. Energies, 2022, 15(5): 1832
doi: 10.3390/en15051832
3 Hui W J, Dong H, Weng Y Q. Research and development trends of high strength steel for bolts [J]. Mater. Mech. Eng., 2002, 26(11): 1
惠卫军, 董 瀚, 翁宇庆. 高强度螺栓钢的发展动向 [J]. 机械工程材料, 2002, 26(11): 1
4 Liu L, Li P Y. Present situation and development tendency of high strength bolt steel [J]. J. Shanghai Univ. Eng. Sci., 2010, 24(2): 173
刘 雷, 李培耀. 高强度螺栓材料的研究现状与趋势 [J]. 上海工程技术大学学报, 2010, 24(2): 173
5 Feng Y Y. Study on design, preparation and properties of 2200 MPa grade low alloy steel [D]. Nanjing: Nanjing University of Science and Technology, 2018
冯亚亚. 2200 MPa级低合金钢设计制备与性能研究 [D]. 南京: 南京理工大学, 2018
6 Tian L, Borchers C, Kubota M, et al. A study of crack initiation in a low alloy steel [J]. Acta Mater., 2022, 223: 117474
doi: 10.1016/j.actamat.2021.117474
7 Jiang Z H, Wang P, Li D Z, et al. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45(15): 1
doi: 10.1016/j.jmst.2019.03.012
8 Lee K H, Park S G, Kim M C, et al. Characterization of transition behavior in SA508 Gr.4N Ni-Cr-Mo low alloy steels with microstructural alteration by Ni and Cr contents [J]. Mater. Sci. Eng., 2011, 529A(25) : 156
9 Hao X X, Xi T, Zhang H Z, et al. Effect of quenching temperature on microstructure and properties of Cu-bearing 5Cr15MoV martensitic stainless steel [J]. Chin. J. Mater. Res., 2021, 35: 933
doi: 10.11901/1005.3093.2021.214
郝欣欣, 席 通, 张宏镇 等. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响 [J]. 材料研究学报, 2021, 35: 933
doi: 10.11901/1005.3093.2021.214
10 Kınıt U, Bozca M. Heat treatment effects on the mechanical properties and microstructure of 30MnB4 steel bolts [J]. Mater. Test., 2014, 56(11-12): 945
doi: 10.3139/120.110654
11 Ahn S T, Kim D S, Nam W J. Microstructural evolution and mechanical properties of low alloy steel tempered by induction heating [J]. J. Mater. Process. Technol., 2005, 160(1): 54
doi: 10.1016/j.jmatprotec.2004.03.019
12 Yu W, Qian Y J, Wu H B, et al. Effect of heat treatment process on properties of 1000 MPa ultra-high strength steel [J]. J. Iron Steel Res. Int., 2011, 18(2): 64
13 Chang W S. Microstructure and mechanical properties of 780 MPa high strength steels produced by direct-quenching and tempering process [J]. J. Mater. Sci., 2002, 37(10): 1973
doi: 10.1023/A:1015290930107
14 Zhao M Y, Peng T, Zhao J Q, et al. Effect of long-term aging on microstructure and mechanical properties of 20Cr1Mo1VTiB bolt steel [J]. Chin. J. Mater. Res., 2020, 34: 321
doi: 10.11901/1005.3093.2019.361
赵孟雅, 彭 涛, 赵吉庆 等. 长期时效对20Cr1Mo1VTiB螺栓钢的组织和力学性能的影响 [J]. 材料研究学报, 2020, 34: 321
doi: 10.11901/1005.3093.2019.361
15 Gong X T, Wu Z G, Li X, et al. Effect of heat treatment process on microstructure and mechanical properties of 20Cr1Mo1VTiB steel [J]. Iron Steel, 2018, 53(12): 105
龚雪婷, 武志广, 李 鑫 等. 热处理工艺对20Cr1Mo1VTiB螺栓钢组织及性能的影响 [J]. 钢铁, 2018, 53(12): 105
16 Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
17 Yang F, Veljkovic M, Liu Y Q. Fracture simulation of partially threaded bolts under tensile loading [J]. Eng. Struct., 2021, 226: 111373
doi: 10.1016/j.engstruct.2020.111373
18 Hu Y, Shen L, Nie S D, et al. FE simulation and experimental tests of high-strength structural bolts under tension [J]. J. Constr. Steel Res., 2016, 126: 174
doi: 10.1016/j.jcsr.2016.07.021
19 Grimsmo E L, Aalberg A, Langseth M, et al. Failure modes of bolt and nut assemblies under tensile loading [J]. J. Constr. Steel Res., 2016, 126: 15
doi: 10.1016/j.jcsr.2016.06.023
20 Shu D L. Mechanical Properties of Engineering Materials. 3rd ed. [M]. Beijing: China Machine Press, 2016: 49
束德林. 工程材料力学性能. 第3版 [M]. 北京: 机械工业出版社, 2016: 49
21 Lei X Q, Li C L, Shi X H, et al. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture [J]. Sci. Rep., 2015, 5: 10537
doi: 10.1038/srep10537 pmid: 26022892
22 Rosenberg G, Sinaiová I, Juhar L. Effect of microstructure on mechanical properties of dual phase steels in the presence of stress concentrators [J]. Mater. Sci. Eng., 2013, 582A: 347
23 Moore A M. Evaluation of the current resistance factors for high-strength bolts [D]. Cincinnati: University of Cincinnati, 2007
24 Yang M Q, Yang W J, Pang J C, et al. Fatigue life prediction method of 35CrMo alloy steel bolt [J]. J. Central South Univ. (Sci. Technol.), 2023, 54(5): 1748
杨梦起, 杨文军, 庞建超 等. 35CrMo 钢螺栓疲劳寿命预测方法研究 [J]. 中南大学学报(自然科学版), 2023, 54(5): 1748
25 Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2013, 564A: 331
26 Song L. Notch sensitivity of embrittled HR3C steel tube after service [J]. Mater. Mech. Eng., 2020, 44(2): 13
doi: 10.11973/jxgccl202002003
宋 利. 服役脆化态HR3C钢管的缺口敏感性 [J]. 机械工程材料, 2020, 44(2): 13
27 Zhang W Q, Wang J Y, Zhang X K. Notch effect of metallic material during tensile testing [J]. Phys. Test. Chem. Anal., 2008, 44A(10) : 533
张文泉, 王俊英, 张学昆. 金属材料拉伸试验的缺口效应 [J]. 理化检验, 2008, 44A(10) : 533
28 Yang M Q, Gao C, Pang J C, et al. High-cycle fatigue behavior and fatigue strength prediction of differently heat-treated 35CrMo steels [J]. Metals, 2022, 12(4): 688
doi: 10.3390/met12040688
29 Xu Z Y, Huang B L, Yan G Q. China Materials Enginering Canon. Vol. 26: Material Characterization and Detection Technology [M]. Beijing: Chemical Industry Press, 2005: 500
徐祖耀, 黄本立, 鄢国强. 中国材料工程大典. 第26卷: 材料表征与检测技术 [M]. 北京: 化学工业出版社, 2005: 500
30 Wang L, Park J H, Choi N S. Observation of notch effect in Al6061-T6 specimens under tensile loading using digital image correlation and finite element method [J]. J. Mech. Sci. Technol., 2020, 34(3): 1049
doi: 10.1007/s12206-020-0207-3
31 Xu J Q. Theory on the Strength of Materials [M]. Shanghai: Shanghai Jiao Tong University Press, 2009: 56
许金泉. 材料强度学 [M]. 上海: 上海交通大学出版社, 2009: 56
32 Pang J C, Li S X, Wang Z G, et al. Relations between fatigue strength and other mechanical properties of metallic materials [J]. Fatigue Fract. Eng. Mater. Struct., 2014, 37(9): 958
doi: 10.1111/ffe.v37.9
33 Matsuoka S. Relationship between 0.2% proof stress and vickers hardness of work-hardened low carbon austenitic stainless steel, 316SS [J]. Trans. Japan Soc. Mech. Eng. Ser., 2004, 70A(698) : 1535
34 Osada T, Gu Y F, Nagashima N, et al. Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure [J]. Acta Mater., 2013, 61(5): 1820
doi: 10.1016/j.actamat.2012.12.004
35 Megahed M M, Abd-Allah N M, Eleiche A M. Modeling of notch tensile behavior of martensitic steels [J]. J. Mater. Eng. Perform., 2003, 12(1): 61
doi: 10.1361/105994903770343493
[1] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[2] LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus[J]. 材料研究学报, 2024, 38(3): 187-196.
[3] YIN Yanchao, LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei. Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature[J]. 材料研究学报, 2024, 38(3): 232-240.
[4] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[5] ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2024, 38(2): 111-120.
[6] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[7] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[8] LIU Zhenhuan, LI Yonghan, LIU Yang, WANG Pei, LI Dianzhong. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. 材料研究学报, 2024, 38(2): 130-140.
[9] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[10] YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2024, 38(1): 23-32.
[11] LV Tao, LIU Fang, LIU Chang, DONG Dexiu, ZHANG Weihong, CAI Guixi. Influence of Microstructure on Ultrasonic Attenuation of Forged GH907 Alloy Ring for Aero Engine Turbine Casing[J]. 材料研究学报, 2024, 38(1): 14-22.
[12] QIN Yanli, ZHAO Guangpu, ZHANG Hao, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting[J]. 材料研究学报, 2024, 38(1): 43-50.
[13] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[14] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[15] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
No Suggested Reading articles found!