|
|
Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures |
QI Kaili1,3, HU Dejiang2, GAO Chong3, LIU Feng1,4, PANG Jianchao3( ), SHAO Chenwei3, YANG Mengqi2, LI Shouxin3, ZHANG Zhefeng3 |
1.School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China 2.Maintenance and Test Branch, China Southern Power Grid Power Generation Co., Ltd., Guangzhou 511400, China 3.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 4.Ji Hua Laboratory, Foshan 528200, China |
|
Cite this article:
QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures. Chinese Journal of Materials Research, 2024, 38(3): 197-207.
|
Abstract The microstructure and notch tensile fracture morphologies at different stress concentration factors of the low alloy steel 35CrMo for the head cover bolts of the pump turbine of a storage power station were investigated by electron backscatter diffraction microscopy and scanning electron microscopy. The effects of tempering temperature on the relationship between tensile properties, damage mechanism and mechanical properties of 35CrMo steel were studied. The results show that the microstructures of tempered state at 150~200oC and quenched state are composed of lath martensite. After tempering at 400oC, the microstructure of tempered troostite is more uniform. The final fracture of the notched specimens is a mixture of ductile and brittle fracture. At the two stress concentration factors (Kt = 3, 5), the notch tensile strength has the same changing trend with the tempering temperature. With the tempering temperature increasing, the notch tensile strength first increases and then decreases. For Kt = 3, the highest tensile strength is 2626 MPa at tempering temperature of 150oC; when Kt = 5, the highest tensile strength is 2450 MPa at tempering temperature of 200oC. Notch sensitivity ratio (NSR) is greater than 1, that is, notch strengthening effect occurs after different tempering temperatures, and notch sensitivity tends to decrease with the increase of tempering temperature. With the increase of stress concentration factor, the notch strengthening effect of specimens treated at different tempering temperatures shows an increasing trend first and then a decreasing trend, and the notch strengthening efficiency was the most obvious when tempering at 400oC. Finally, based on the relationship between hardness and notch tensile strength, a fast prediction method of notch tensile strength was proposed, and the prediction error was less than 8%.
|
Received: 30 March 2023
|
|
Fund: National Key Research and Development Program of China(2022YFB3708200);Science and Technology Project of Maintenance and Testing Branch, China Southern Power Grid Power Generation Co. Ltd(022200KK52180006) |
Corresponding Authors:
PANG Jianchao, Tel:(024)83978879, E-mail: jcpang@imr.ac.cn
|
1 |
Wang B Q, Chen L R, Chen X F. High Strength Bolt Connection [M]. Beijing: Metallurgical Industry Press, 1991: 8
|
|
王伯琴, 陈录如, 陈先峰. 高强度螺栓连接 [M]. 北京: 冶金工业出版社, 1991: 8
|
2 |
Wang Z W, Yang J W, Wang W, et al. Research on the flow-induced stress characteristics of head-cover bolts of a pump-turbine during turbine start-up [J]. Energies, 2022, 15(5): 1832
doi: 10.3390/en15051832
|
3 |
Hui W J, Dong H, Weng Y Q. Research and development trends of high strength steel for bolts [J]. Mater. Mech. Eng., 2002, 26(11): 1
|
|
惠卫军, 董 瀚, 翁宇庆. 高强度螺栓钢的发展动向 [J]. 机械工程材料, 2002, 26(11): 1
|
4 |
Liu L, Li P Y. Present situation and development tendency of high strength bolt steel [J]. J. Shanghai Univ. Eng. Sci., 2010, 24(2): 173
|
|
刘 雷, 李培耀. 高强度螺栓材料的研究现状与趋势 [J]. 上海工程技术大学学报, 2010, 24(2): 173
|
5 |
Feng Y Y. Study on design, preparation and properties of 2200 MPa grade low alloy steel [D]. Nanjing: Nanjing University of Science and Technology, 2018
|
|
冯亚亚. 2200 MPa级低合金钢设计制备与性能研究 [D]. 南京: 南京理工大学, 2018
|
6 |
Tian L, Borchers C, Kubota M, et al. A study of crack initiation in a low alloy steel [J]. Acta Mater., 2022, 223: 117474
doi: 10.1016/j.actamat.2021.117474
|
7 |
Jiang Z H, Wang P, Li D Z, et al. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45(15): 1
doi: 10.1016/j.jmst.2019.03.012
|
8 |
Lee K H, Park S G, Kim M C, et al. Characterization of transition behavior in SA508 Gr.4N Ni-Cr-Mo low alloy steels with microstructural alteration by Ni and Cr contents [J]. Mater. Sci. Eng., 2011, 529A(25) : 156
|
9 |
Hao X X, Xi T, Zhang H Z, et al. Effect of quenching temperature on microstructure and properties of Cu-bearing 5Cr15MoV martensitic stainless steel [J]. Chin. J. Mater. Res., 2021, 35: 933
doi: 10.11901/1005.3093.2021.214
|
|
郝欣欣, 席 通, 张宏镇 等. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响 [J]. 材料研究学报, 2021, 35: 933
doi: 10.11901/1005.3093.2021.214
|
10 |
Kınıt U, Bozca M. Heat treatment effects on the mechanical properties and microstructure of 30MnB4 steel bolts [J]. Mater. Test., 2014, 56(11-12): 945
doi: 10.3139/120.110654
|
11 |
Ahn S T, Kim D S, Nam W J. Microstructural evolution and mechanical properties of low alloy steel tempered by induction heating [J]. J. Mater. Process. Technol., 2005, 160(1): 54
doi: 10.1016/j.jmatprotec.2004.03.019
|
12 |
Yu W, Qian Y J, Wu H B, et al. Effect of heat treatment process on properties of 1000 MPa ultra-high strength steel [J]. J. Iron Steel Res. Int., 2011, 18(2): 64
|
13 |
Chang W S. Microstructure and mechanical properties of 780 MPa high strength steels produced by direct-quenching and tempering process [J]. J. Mater. Sci., 2002, 37(10): 1973
doi: 10.1023/A:1015290930107
|
14 |
Zhao M Y, Peng T, Zhao J Q, et al. Effect of long-term aging on microstructure and mechanical properties of 20Cr1Mo1VTiB bolt steel [J]. Chin. J. Mater. Res., 2020, 34: 321
doi: 10.11901/1005.3093.2019.361
|
|
赵孟雅, 彭 涛, 赵吉庆 等. 长期时效对20Cr1Mo1VTiB螺栓钢的组织和力学性能的影响 [J]. 材料研究学报, 2020, 34: 321
doi: 10.11901/1005.3093.2019.361
|
15 |
Gong X T, Wu Z G, Li X, et al. Effect of heat treatment process on microstructure and mechanical properties of 20Cr1Mo1VTiB steel [J]. Iron Steel, 2018, 53(12): 105
|
|
龚雪婷, 武志广, 李 鑫 等. 热处理工艺对20Cr1Mo1VTiB螺栓钢组织及性能的影响 [J]. 钢铁, 2018, 53(12): 105
|
16 |
Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
|
|
王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
|
17 |
Yang F, Veljkovic M, Liu Y Q. Fracture simulation of partially threaded bolts under tensile loading [J]. Eng. Struct., 2021, 226: 111373
doi: 10.1016/j.engstruct.2020.111373
|
18 |
Hu Y, Shen L, Nie S D, et al. FE simulation and experimental tests of high-strength structural bolts under tension [J]. J. Constr. Steel Res., 2016, 126: 174
doi: 10.1016/j.jcsr.2016.07.021
|
19 |
Grimsmo E L, Aalberg A, Langseth M, et al. Failure modes of bolt and nut assemblies under tensile loading [J]. J. Constr. Steel Res., 2016, 126: 15
doi: 10.1016/j.jcsr.2016.06.023
|
20 |
Shu D L. Mechanical Properties of Engineering Materials. 3rd ed. [M]. Beijing: China Machine Press, 2016: 49
|
|
束德林. 工程材料力学性能. 第3版 [M]. 北京: 机械工业出版社, 2016: 49
|
21 |
Lei X Q, Li C L, Shi X H, et al. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture [J]. Sci. Rep., 2015, 5: 10537
doi: 10.1038/srep10537
pmid: 26022892
|
22 |
Rosenberg G, Sinaiová I, Juhar L. Effect of microstructure on mechanical properties of dual phase steels in the presence of stress concentrators [J]. Mater. Sci. Eng., 2013, 582A: 347
|
23 |
Moore A M. Evaluation of the current resistance factors for high-strength bolts [D]. Cincinnati: University of Cincinnati, 2007
|
24 |
Yang M Q, Yang W J, Pang J C, et al. Fatigue life prediction method of 35CrMo alloy steel bolt [J]. J. Central South Univ. (Sci. Technol.), 2023, 54(5): 1748
|
|
杨梦起, 杨文军, 庞建超 等. 35CrMo 钢螺栓疲劳寿命预测方法研究 [J]. 中南大学学报(自然科学版), 2023, 54(5): 1748
|
25 |
Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2013, 564A: 331
|
26 |
Song L. Notch sensitivity of embrittled HR3C steel tube after service [J]. Mater. Mech. Eng., 2020, 44(2): 13
doi: 10.11973/jxgccl202002003
|
|
宋 利. 服役脆化态HR3C钢管的缺口敏感性 [J]. 机械工程材料, 2020, 44(2): 13
|
27 |
Zhang W Q, Wang J Y, Zhang X K. Notch effect of metallic material during tensile testing [J]. Phys. Test. Chem. Anal., 2008, 44A(10) : 533
|
|
张文泉, 王俊英, 张学昆. 金属材料拉伸试验的缺口效应 [J]. 理化检验, 2008, 44A(10) : 533
|
28 |
Yang M Q, Gao C, Pang J C, et al. High-cycle fatigue behavior and fatigue strength prediction of differently heat-treated 35CrMo steels [J]. Metals, 2022, 12(4): 688
doi: 10.3390/met12040688
|
29 |
Xu Z Y, Huang B L, Yan G Q. China Materials Enginering Canon. Vol. 26: Material Characterization and Detection Technology [M]. Beijing: Chemical Industry Press, 2005: 500
|
|
徐祖耀, 黄本立, 鄢国强. 中国材料工程大典. 第26卷: 材料表征与检测技术 [M]. 北京: 化学工业出版社, 2005: 500
|
30 |
Wang L, Park J H, Choi N S. Observation of notch effect in Al6061-T6 specimens under tensile loading using digital image correlation and finite element method [J]. J. Mech. Sci. Technol., 2020, 34(3): 1049
doi: 10.1007/s12206-020-0207-3
|
31 |
Xu J Q. Theory on the Strength of Materials [M]. Shanghai: Shanghai Jiao Tong University Press, 2009: 56
|
|
许金泉. 材料强度学 [M]. 上海: 上海交通大学出版社, 2009: 56
|
32 |
Pang J C, Li S X, Wang Z G, et al. Relations between fatigue strength and other mechanical properties of metallic materials [J]. Fatigue Fract. Eng. Mater. Struct., 2014, 37(9): 958
doi: 10.1111/ffe.v37.9
|
33 |
Matsuoka S. Relationship between 0.2% proof stress and vickers hardness of work-hardened low carbon austenitic stainless steel, 316SS [J]. Trans. Japan Soc. Mech. Eng. Ser., 2004, 70A(698) : 1535
|
34 |
Osada T, Gu Y F, Nagashima N, et al. Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure [J]. Acta Mater., 2013, 61(5): 1820
doi: 10.1016/j.actamat.2012.12.004
|
35 |
Megahed M M, Abd-Allah N M, Eleiche A M. Modeling of notch tensile behavior of martensitic steels [J]. J. Mater. Eng. Perform., 2003, 12(1): 61
doi: 10.1361/105994903770343493
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|