Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (3): 232-240    DOI: 10.11901/1005.3093.2023.230
ARTICLES Current Issue | Archive | Adv Search |
Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature
YIN Yanchao(), LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei
Luoyang Ship Material Research Institute, Luoyang 471023, China
Cite this article: 

YIN Yanchao, LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei. Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature. Chinese Journal of Materials Research, 2024, 38(3): 232-240.

Download:  HTML  PDF(22584KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The tensile properties of Ti-Al-Fe alloy were assessed at 25oC and -196oC respectively, aiming to understand the service performance and plastic deformation mechanism of the low-cost Ti-Al-Fe alloy at extreme low temperatures, so that to ensure the service safety of the relevant engineering structures. The microstructure and fracture surface of the alloy were characterized by scanning electron microscope, transmission electron microscope and electron backscatter diffraction technology. The results show that twinning is rarely found in the microstructure of the alloy after plastic deformation at 25oC, and the plastic deformation mechanism is mainly dislocation slipping. Ti-Al-Fe alloy exhibits better strength and plasticity at 196oC, with clear twinning induced plastic effect. A large number of twins are produced during plastic deformation, which include{112-2} compression twins, {101-2} tensile twins, {112-4} compression twins. The plastic deformation mechanism may be ascribed to the coexistence of slipping and twinning. At the initial stage of deformation, {112-2} twins are mainly found, and the number of {101-2} twins increase at the later stage of deformation.

Key words:  metallic materials      Ti-Al-Fe alloy      tensile property      plastic deformation mechanism      twinning     
Received:  18 April 2023     
ZTFLH:  TG146.23  
Fund: National Natural Science Foundation of China(51701189)
Corresponding Authors:  YIN Yanchao, Tel:(0379)64829315, E-mail: alvinyin@sina.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.230     OR     https://www.cjmr.org/EN/Y2024/V38/I3/232

AlFeCNHOSiTi
0.9911.130.010.0060.0010.0850.01Bal.
Table 1  Chemical composition of Ti-Al-Fe alloy (mass fraction, %)
Fig.1  Microstructure of Ti-Al-Fe alloy (a) as-received; (b) as-annealed
StateTemperature / oCRp0.2/ MPaRm/ MPaA/ %Z/ %
As-received254096062341
-19680510243341
As-annealed253355302442
-19666910113934
Table 2  Tensile properties of Ti-Al-Fe alloy as-received and as-annealed
Fig.2  Macro-morphologies of tensile fracture surfaces of as annealed Ti-Al-Fe alloy (a) 25oC; (b) -196oC
Fig.3  Micro-morphologies of tensile fracture surfaces of as annealed Ti-Al-Fe alloy (a, c) 25oC; (b, d) -196oC
Fig.4  Micrographs of as annealed Ti-Al-Fe alloy after different plastic deformations at -196oC (a) 7.0%; (b) 11.0%; (c) 14.5%; (d) 19.5%; (e) 22.5%; (f) 34.0%
Fig.5  Morphologies and orientation of twinning (a) A1; (b) B1; (c) C1; (d) D1; (e) A2; (f) B2; (g) C2; (h) D2
Fig.6  Misorientation angle of as annealed Ti-Al-Fe alloy at -196oC (a) HTA; (b) 7.0%; (c) 11.0%; (d) 14.5%; (e) 19.5%; (f) 34.0%
Fig.7  TEM micrographs of tensile specimen of as annealed Ti-Al-Fe alloy deformed at 25oC (a) high density dislocation area; (b) dislocation cell; (c) dislocation block at triple junction of grain boundary; (d) dislocation block at the interface of α phase and β phase
Fig.8  TEM micrographs of tensile specimen of as annealed Ti-Al-Fe alloy deformed at -196oC (a) parallel twin; (b) intersected twin; (c) braided twin; (d) dislocation slipping in the twin; (e) secondary twin; (f) TEM diffraction pattern calibration of the first twin and secondary twin
Fig.9  EBSD experimental results of as annealed Ti-Al-Fe alloy bar (a) (0002), (101-0) pole figures; (b) inverse pole figures
1 Moiseyev V N. Titanium Alloys: Russian Aircraft and Aerospace Applications [M]. Boca Raton: CRC Press, 2005: 195
2 Donachie M J. Titanium: A Technical Guide 2nd ed [M]. Materials Park: ASM International, 2000: 1
3 Zhao Y Q, Chen Y N, Zhang X M, et al. Phase Transformation and Heat Treatment of Titanium Alloys [M]. Changsha: Central South University Press, 2012
赵永庆, 陈永楠, 张学敏 等. 钛合金相变及热处理 [M]. 长沙: 中南大学出版社, 2012
4 Huang C W, Ge P, Zhao Y Q, et al. Research progress in titanium alloys at cryogenic temperatures [J]. Rare Met. Mater. Eng., 2016, 45(1): 254
黄朝文, 葛 鹏, 赵永庆 等. 低温钛合金的研究进展 [J]. 稀有金属材料与工程, 2016, 45(1): 254
5 Hu Y J, Chen J, Li C L, et al. A kind of Ti-Al-Fe system alloys for ship use [J]. Acta Metall. Sin., 2002, 38(suppl.1) : 584
胡耀君, 陈 军, 李长亮 等. 一种Ti-Al-Fe系船用钛合金 [J]. 金属学报, 2002, 38(): 584
6 Wang Q L, Cheng X L, Yang Y L. Study on TA36 titanium alloy tube rolling technology [J]. World Nonferrous Met., 2021, (16): 107
王巧莉, 成小丽, 羊玉兰. TA36钛合金管材轧制工艺研究 [J]. 世界有色金属, 2021, (16): 107
7 Lütjering G, Williams J C. Titanium [M]. 2nd ed. Berlin: Springer-Verlag, 2007: 19
8 Williams J C, Baggerly R G, Paton N E. Deformation behavior of HCP Ti-Al alloy single crystals [J]. Metall. Mater. Trans., 2002, 33A: 837
9 Yin Y C, Yu B B, Zhang B B. Tensile behavior of commercial pure titanium at low temperature [J]. Dev. Appl. Mater., 2019, 34(2): 40
尹艳超, 于冰冰, 张斌斌. 工业纯钛的低温拉伸行为研究 [J]. 材料开发与应用, 2019, 34(2): 36
10 Sun Q Y, Gu H C. Tensile and low-cycle fatigue behavior of commercially pure titanium and Ti-5Al-2.5Sn alloy at 293 and 77 K [J]. Mater. Sci. Eng., 2001, 316A: 80
11 Nagai K, Ishikawa K, Mizoguchi T, et al. Strength and fracture toughness of Ti-5Al2.5Sn ELI alloy at cryogenic temperatures [J]. Cryogenics, 1986, 26: 19
doi: 10.1016/0011-2275(86)90190-6
12 Ghisi A, Mariani S. Mechanical characterization of Ti-5Al-2.5Sn ELI alloy at cryogenic and room temperatures [J]. Int. J. Fract., 2007, 146: 61
doi: 10.1007/s10704-007-9140-z
13 Akhtar A. Basal slip and twinning in α-titanium single crystals [J]. Metall. Trans., 1975, 6A: 1105
14 Ambard A, Guétaz L, Louchet F, et al. Role of interphases in the deformation mechanisms of an α/β titanium alloy at 20 K [J]. Mater. Sci. Eng., 2001, 319-321A: 404
15 Lei L, Zhao Q Y, Zhu Q W, et al. Twinning-induced high impact toughness of titanium alloy at cryogenic temperature [J]. Mater. Sci. Eng., 2022, 860A: 144258
16 Lei L, Zhu Q W, Zhao Q Y, et al. Low-temperature impact toughness and deformation mechanism of CT20 titanium alloy [J]. Mater. Charact., 2023, 195: 112504
doi: 10.1016/j.matchar.2022.112504
17 Soulami A, Choi K S, Shen Y F, et al. On deformation twinning in a 17.5% Mn-TWIP steel: a physically based phenomenological model [J]. Mater. Sci. Eng., 2011, 528A(3) : 1402
18 Lei C S, Deng X T, Li X L, et al. Simultaneous enhancement of strength and ductility through coordination deformation and multi-stage transformation induced plasticity (TRIP) effect in heterogeneous metastable austenitic steel [J]. Scr. Mater., 2019, 162: 421
doi: 10.1016/j.scriptamat.2018.12.007
19 Leyens C, Peters M. Titanium and Titanium Alloys [M]. Weinheim: Wiley, 2003: 5
20 Wang X Q, Han W Z. Oxygen-gradient titanium with high strength, strain hardening and toughness [J]. Acta Mater., 2023, 246: 118674
doi: 10.1016/j.actamat.2023.118674
21 Zhao S T, Zhang R P, Yu Q, et al. Cryoforged nanotwinned titanium with ultrahigh strength and ductility [J]. Science, 2021, 373(6561): 1363
doi: 10.1126/science.abe7252 pmid: 34529490
22 Chong Y, Zhang R P, Hooshmand M S, et al. Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al [J]. Nat. Commun., 2021, 12(1): 6158
doi: 10.1038/s41467-021-26374-w pmid: 34697309
23 Hooshmand M S. Atomic-scale modeling of twinning in titanium and other HCP alloys [D]. Columbus: The Ohio State University, 2019
24 Fitzner A, Leo Prakash D G, da Fonseca J Q, et al. The effect of aluminium on twinning in binary alpha-titanium [J]. Acta Mater., 2016, 103: 341
doi: 10.1016/j.actamat.2015.09.048
25 Liang Z, Miao J S, Brown T, et al. A low-cost and high-strength Ti-Al-Fe-based cast titanium alloy for structural applications [J]. Scr. Mater., 2018, 157: 124
doi: 10.1016/j.scriptamat.2018.08.005
26 Pan J S, Tong J M, Tian M B. Fundamentals of Materials Sci-ence [M]. Beijing: Tsinghua University Press, 2011
潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011
27 Partridge P G. The crystallography and deformation modes of hexagonal close-packed metals [J]. Metall. Rev., 1967, 12(1): 169
doi: 10.1179/imr.1967.12.1.169
28 Luan Q M, Britton T B, Jun T S. Strain rate sensitivity in commercial pure titanium: the competition between slip and deformation twinning [J]. Mater. Sci. Eng., 2018, 734A: 385
29 Ahmed M, Wexler D, Casillas G, et al. Strain rate dependence of deformation-induced transformation and twinning in a metastable titanium alloy [J]. Acta Mater., 2016, 104: 190
doi: 10.1016/j.actamat.2015.11.026
30 Won J W, Choi S W, Yeom J T, et al. Anisotropic twinning and slip behaviors and their relative activities in rolled alpha-phase titanium [J] Mater. Sci. Eng., 2017, 698A: 54
31 Luo J R, Song X, Zhuang L Z, et al. Twinning behavior of a basal textured commercially pure titanium alloy TA2 at ambient and cryogenic temperatures [J]. J. Iron Steel Res. Int., 2016, 23(1): 74
doi: 10.1016/S1006-706X(16)30015-2
32 Yan Z W, Wang L, Ning Z X, et al. Evolution of dislocations and deformation twins in Ti6321 titanium alloy under contact explosion [J]. J. Mater. Res. Technol., 2023, 24: 1070
doi: 10.1016/j.jmrt.2023.03.027
33 Yu W X, Lv Y F, Li S K, et al. Mechanism of the anisotropy of yield ratio in TA5 titanium alloy plates [J]. Mater. Sci. Eng., 2015, 639A: 314
34 Yu W X, Li S K, Yin Y C, et al. Variation of microstructure and mechanical properties of Ti6321 alloy wire during the forming process [J]. Rare Met. Mater. Eng, 2017, 46(suppl.1) : 171
于卫新, 李士凯, 尹艳超 等. Ti6321合金丝成形过程中组织结构和性能演变研究 [J]. 稀有金属材料与工程, 2017, 46(): 171
[1] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[2] QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. 材料研究学报, 2024, 38(3): 197-207.
[3] LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus[J]. 材料研究学报, 2024, 38(3): 187-196.
[4] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[5] ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2024, 38(2): 111-120.
[6] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[7] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[8] LIU Zhenhuan, LI Yonghan, LIU Yang, WANG Pei, LI Dianzhong. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. 材料研究学报, 2024, 38(2): 130-140.
[9] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[10] YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2024, 38(1): 23-32.
[11] QIN Yanli, ZHAO Guangpu, ZHANG Hao, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting[J]. 材料研究学报, 2024, 38(1): 43-50.
[12] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[13] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[14] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[15] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
No Suggested Reading articles found!