|
|
Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature |
YIN Yanchao( ), LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei |
Luoyang Ship Material Research Institute, Luoyang 471023, China |
|
Cite this article:
YIN Yanchao, LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei. Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature. Chinese Journal of Materials Research, 2024, 38(3): 232-240.
|
Abstract The tensile properties of Ti-Al-Fe alloy were assessed at 25oC and -196oC respectively, aiming to understand the service performance and plastic deformation mechanism of the low-cost Ti-Al-Fe alloy at extreme low temperatures, so that to ensure the service safety of the relevant engineering structures. The microstructure and fracture surface of the alloy were characterized by scanning electron microscope, transmission electron microscope and electron backscatter diffraction technology. The results show that twinning is rarely found in the microstructure of the alloy after plastic deformation at 25oC, and the plastic deformation mechanism is mainly dislocation slipping. Ti-Al-Fe alloy exhibits better strength and plasticity at 196oC, with clear twinning induced plastic effect. A large number of twins are produced during plastic deformation, which include{112} compression twins, {102} tensile twins, {114} compression twins. The plastic deformation mechanism may be ascribed to the coexistence of slipping and twinning. At the initial stage of deformation, {112} twins are mainly found, and the number of {102} twins increase at the later stage of deformation.
|
Received: 18 April 2023
|
|
Fund: National Natural Science Foundation of China(51701189) |
Corresponding Authors:
YIN Yanchao, Tel:(0379)64829315, E-mail: alvinyin@sina.cn
|
1 |
Moiseyev V N. Titanium Alloys: Russian Aircraft and Aerospace Applications [M]. Boca Raton: CRC Press, 2005: 195
|
2 |
Donachie M J. Titanium: A Technical Guide 2nd ed [M]. Materials Park: ASM International, 2000: 1
|
3 |
Zhao Y Q, Chen Y N, Zhang X M, et al. Phase Transformation and Heat Treatment of Titanium Alloys [M]. Changsha: Central South University Press, 2012
|
|
赵永庆, 陈永楠, 张学敏 等. 钛合金相变及热处理 [M]. 长沙: 中南大学出版社, 2012
|
4 |
Huang C W, Ge P, Zhao Y Q, et al. Research progress in titanium alloys at cryogenic temperatures [J]. Rare Met. Mater. Eng., 2016, 45(1): 254
|
|
黄朝文, 葛 鹏, 赵永庆 等. 低温钛合金的研究进展 [J]. 稀有金属材料与工程, 2016, 45(1): 254
|
5 |
Hu Y J, Chen J, Li C L, et al. A kind of Ti-Al-Fe system alloys for ship use [J]. Acta Metall. Sin., 2002, 38(suppl.1) : 584
|
|
胡耀君, 陈 军, 李长亮 等. 一种Ti-Al-Fe系船用钛合金 [J]. 金属学报, 2002, 38(): 584
|
6 |
Wang Q L, Cheng X L, Yang Y L. Study on TA36 titanium alloy tube rolling technology [J]. World Nonferrous Met., 2021, (16): 107
|
|
王巧莉, 成小丽, 羊玉兰. TA36钛合金管材轧制工艺研究 [J]. 世界有色金属, 2021, (16): 107
|
7 |
Lütjering G, Williams J C. Titanium [M]. 2nd ed. Berlin: Springer-Verlag, 2007: 19
|
8 |
Williams J C, Baggerly R G, Paton N E. Deformation behavior of HCP Ti-Al alloy single crystals [J]. Metall. Mater. Trans., 2002, 33A: 837
|
9 |
Yin Y C, Yu B B, Zhang B B. Tensile behavior of commercial pure titanium at low temperature [J]. Dev. Appl. Mater., 2019, 34(2): 40
|
|
尹艳超, 于冰冰, 张斌斌. 工业纯钛的低温拉伸行为研究 [J]. 材料开发与应用, 2019, 34(2): 36
|
10 |
Sun Q Y, Gu H C. Tensile and low-cycle fatigue behavior of commercially pure titanium and Ti-5Al-2.5Sn alloy at 293 and 77 K [J]. Mater. Sci. Eng., 2001, 316A: 80
|
11 |
Nagai K, Ishikawa K, Mizoguchi T, et al. Strength and fracture toughness of Ti-5Al2.5Sn ELI alloy at cryogenic temperatures [J]. Cryogenics, 1986, 26: 19
doi: 10.1016/0011-2275(86)90190-6
|
12 |
Ghisi A, Mariani S. Mechanical characterization of Ti-5Al-2.5Sn ELI alloy at cryogenic and room temperatures [J]. Int. J. Fract., 2007, 146: 61
doi: 10.1007/s10704-007-9140-z
|
13 |
Akhtar A. Basal slip and twinning in α-titanium single crystals [J]. Metall. Trans., 1975, 6A: 1105
|
14 |
Ambard A, Guétaz L, Louchet F, et al. Role of interphases in the deformation mechanisms of an α/β titanium alloy at 20 K [J]. Mater. Sci. Eng., 2001, 319-321A: 404
|
15 |
Lei L, Zhao Q Y, Zhu Q W, et al. Twinning-induced high impact toughness of titanium alloy at cryogenic temperature [J]. Mater. Sci. Eng., 2022, 860A: 144258
|
16 |
Lei L, Zhu Q W, Zhao Q Y, et al. Low-temperature impact toughness and deformation mechanism of CT20 titanium alloy [J]. Mater. Charact., 2023, 195: 112504
doi: 10.1016/j.matchar.2022.112504
|
17 |
Soulami A, Choi K S, Shen Y F, et al. On deformation twinning in a 17.5% Mn-TWIP steel: a physically based phenomenological model [J]. Mater. Sci. Eng., 2011, 528A(3) : 1402
|
18 |
Lei C S, Deng X T, Li X L, et al. Simultaneous enhancement of strength and ductility through coordination deformation and multi-stage transformation induced plasticity (TRIP) effect in heterogeneous metastable austenitic steel [J]. Scr. Mater., 2019, 162: 421
doi: 10.1016/j.scriptamat.2018.12.007
|
19 |
Leyens C, Peters M. Titanium and Titanium Alloys [M]. Weinheim: Wiley, 2003: 5
|
20 |
Wang X Q, Han W Z. Oxygen-gradient titanium with high strength, strain hardening and toughness [J]. Acta Mater., 2023, 246: 118674
doi: 10.1016/j.actamat.2023.118674
|
21 |
Zhao S T, Zhang R P, Yu Q, et al. Cryoforged nanotwinned titanium with ultrahigh strength and ductility [J]. Science, 2021, 373(6561): 1363
doi: 10.1126/science.abe7252
pmid: 34529490
|
22 |
Chong Y, Zhang R P, Hooshmand M S, et al. Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al [J]. Nat. Commun., 2021, 12(1): 6158
doi: 10.1038/s41467-021-26374-w
pmid: 34697309
|
23 |
Hooshmand M S. Atomic-scale modeling of twinning in titanium and other HCP alloys [D]. Columbus: The Ohio State University, 2019
|
24 |
Fitzner A, Leo Prakash D G, da Fonseca J Q, et al. The effect of aluminium on twinning in binary alpha-titanium [J]. Acta Mater., 2016, 103: 341
doi: 10.1016/j.actamat.2015.09.048
|
25 |
Liang Z, Miao J S, Brown T, et al. A low-cost and high-strength Ti-Al-Fe-based cast titanium alloy for structural applications [J]. Scr. Mater., 2018, 157: 124
doi: 10.1016/j.scriptamat.2018.08.005
|
26 |
Pan J S, Tong J M, Tian M B. Fundamentals of Materials Sci-ence [M]. Beijing: Tsinghua University Press, 2011
|
|
潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011
|
27 |
Partridge P G. The crystallography and deformation modes of hexagonal close-packed metals [J]. Metall. Rev., 1967, 12(1): 169
doi: 10.1179/imr.1967.12.1.169
|
28 |
Luan Q M, Britton T B, Jun T S. Strain rate sensitivity in commercial pure titanium: the competition between slip and deformation twinning [J]. Mater. Sci. Eng., 2018, 734A: 385
|
29 |
Ahmed M, Wexler D, Casillas G, et al. Strain rate dependence of deformation-induced transformation and twinning in a metastable titanium alloy [J]. Acta Mater., 2016, 104: 190
doi: 10.1016/j.actamat.2015.11.026
|
30 |
Won J W, Choi S W, Yeom J T, et al. Anisotropic twinning and slip behaviors and their relative activities in rolled alpha-phase titanium [J] Mater. Sci. Eng., 2017, 698A: 54
|
31 |
Luo J R, Song X, Zhuang L Z, et al. Twinning behavior of a basal textured commercially pure titanium alloy TA2 at ambient and cryogenic temperatures [J]. J. Iron Steel Res. Int., 2016, 23(1): 74
doi: 10.1016/S1006-706X(16)30015-2
|
32 |
Yan Z W, Wang L, Ning Z X, et al. Evolution of dislocations and deformation twins in Ti6321 titanium alloy under contact explosion [J]. J. Mater. Res. Technol., 2023, 24: 1070
doi: 10.1016/j.jmrt.2023.03.027
|
33 |
Yu W X, Lv Y F, Li S K, et al. Mechanism of the anisotropy of yield ratio in TA5 titanium alloy plates [J]. Mater. Sci. Eng., 2015, 639A: 314
|
34 |
Yu W X, Li S K, Yin Y C, et al. Variation of microstructure and mechanical properties of Ti6321 alloy wire during the forming process [J]. Rare Met. Mater. Eng, 2017, 46(suppl.1) : 171
|
|
于卫新, 李士凯, 尹艳超 等. Ti6321合金丝成形过程中组织结构和性能演变研究 [J]. 稀有金属材料与工程, 2017, 46(): 171
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|