Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (3): 177-186    DOI: 10.11901/1005.3093.2022.582
ARTICLES Current Issue | Archive | Adv Search |
Effect of Ca and Ag Content on Microstructure and Properties of Biodegradable Alloy Zn-Li-Ca-Ag
YAN Junzhu1,2, GAO Ming2, YU Xiaoming1, TAN Lili2()
1.College of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

YAN Junzhu, GAO Ming, YU Xiaoming, TAN Lili. Effect of Ca and Ag Content on Microstructure and Properties of Biodegradable Alloy Zn-Li-Ca-Ag. Chinese Journal of Materials Research, 2024, 38(3): 177-186.

Download:  HTML  PDF(16275KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the suitable degradation rate and good biocompatibility, Zn-alloys have great potential as biomedical degradable materials. However, the low mechanical properties of pure Zn limit its development as a biomedical material. In this paper, the known degradable Zn-Li-Ca-Ag alloy was further alloyed with different amount of Ca and Ag. The microstructure, mechanical properties and corrosion resistance of the prepared Zn-Li-Ca-Ag alloys were characterized by means of optical microscopy (OM), scanning electron microscopy (SEM), universal testing machine and electrochemical tests. The results showed that the microstructure of the Zn-Li-Ca-Ag alloy was composed of dendrites. The Ca addition can improve the strength of the Zn alloy by second-phase strengthening, and the Ag addition has a positive influence on the plasticity of the Zn alloy by refining the size of the dendrites. Ca has stronger influence on the enhancement of the alloy strength rather than Ag, and amoung others, the Zn-0.8Li-0.1Ca-0.2Ag alloy exhibits the highest tensile strength (186 MPa). The co-addition of Ca and Ag can also improve the corrosion resistance of Zn alloy.

Key words:  biomaterials      zinc alloy      mechanical properties      corrosion resistance     
Received:  03 November 2022     
ZTFLH:  TG146  
Fund: National Key R&D Program(2020YFC1107501);National Natural Science Foundation of China(51971222);STS Project(20201600200042);Dongguan Innovative Research Team Program, Basic Applied Research Program of Liaoning Province(2022020347-JH2/1013)
Corresponding Authors:  TAN Lili, Tel:(024)23971059, E-mail: lltan@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.582     OR     https://www.cjmr.org/EN/Y2024/V38/I3/177

AlloyLiCaAgZn
Zn-0.8Li-0.2Ag0.7400.2Bal.
Zn-0.8Li-0.05Ca-0.2Ag0.730.0480.22Bal.
Zn-0.8Li-0.1Ca-0.2Ag0.720.0960.2Bal.
Zn-0.8Li-0.05Ca0.730.0510Bal.
Zn-0.8Li-0.05Ca-0.5Ag0.720.0650.53Bal.
Zn-0.8Li-0.05Ca-1Ag0.740.0440.98Bal.
Table 1  Chemical composition of Zn-Li-Ca-Ag alloy (massfraction, %)
CompositionContent / g·L-1
NaCl8.00
KCl0.40
MgSO4·7H2O0.06
CaCl20.14
Na2HPO4·12H2O0.06
KH2PO40.06
MgCl20.10
NaHCO30.35
Table 2  Chemical composition of Hank's solution
Fig.1  Microstructure of cast Zn-0.8Li-xCa-0.2Ag and Zn-0.8Li-0.05Ca-xAg alloys (a) 0, (b) 0.05, (c) 0.1, (d) 0, (e) 0.5, (f) 1
Fig.2  Second phase distribution of as-cast Zn-0.8Li-xCa-0.2Ag and Zn-0.8Li-0.05Ca-xAg alloys (a) 0, (b) 0.05, (c) 0.1, (d) 0,(e) 0.5, (f) 1
PointElement / mass fraction, %
ZnCaAg
198.7101.29
295.094.910
Table 3  EDS results of the positions marked in Fig.2
Fig.3  Microhardness of as cast Zn-0.8Li-xCa-0.2Ag alloy and Zn-0.8Li-0.05Ca-xAg alloy
Fig.4  Stress-strain curves (a, b) and room temperature tensile mechanical properties (c) of as cast Zn-0.8LixCa-0.2Ag alloys (x = 0, 0.05, 0.1, mass fraction, %) (a) and Zn-0.8Li-0.05Ca-xAg alloys (x = 0, 0.05, 0.1, mass fraction, %) (b)
Fig.5  Fracture morphology of as cast Zn-0.8Li-xCa-0.2Ag and Zn-0.8Li-0.05Ca-xAg alloys (a) 0, (b) 0.05, (c) 0.1, (d) 0, (e)0.5, (f) 1
Fig.6  Variation of pH value (a, b) and corrosion rate (c) of as cast Zn-0.8Li-xCa-0.2Ag alloy (x = 0, 0.05, 0.1%) (a) and Zn-0.8Li-0.05Ca-xAg alloy (x = 0, 0.05, 0.1%) (b) after immersion in Hank's solution for 21 d
Fig.7  Corrosion products morphology of as cast Zn-0.8Li-xCa-0.2Ag and Zn-0.8Li-0.05Ca-xAg alloys after 7 d of immersion in Hank's solution (a) 0, (b) 0.05, (c) 0.1, (d) 0, (e) 0.5, (f) 1
ElementPoint
12
C0%0.82%
O36.00%60.03%
Na7.94%7.76%
P12.63%5.10%
K0.42%0. 17%
Ca4.55%0.70%
Zn38.47%25.42%
Total100.00%100%
Table 4  EDS results of the positions marked in Fig.7
Fig.8  XRD patterns of corrosion products of cast Zn-0.8Li-xCa-0.2Ag and Zn-0.8Li-0.05Ca-xAg alloys after 7 d of immersion in Hank's solution
Fig.9  Corrosion morphologies of as cast Zn-0.8Li-xCa-0.2Ag and Zn-0.8Li-0.05Ca-xAg alloys immersed in Hank's solution for 21 d after removing corrosion products (a) 0, (b) 0.05, (c) 0.1, (d) 0, (e) 0.5, (f) 1
Fig.10  Potential polarization curves (a, b), Nyquist curves and equivalent fitting circuit of Zn-0.8Li-xCa-0.2Ag (x = 0, 0.05, 0.1, masss fraction, %) alloy (c) and Zn-0.8Li-0.05Ca-xAg alloy (x = 0, 0.5, 1, masss fraction, %) (d)
Alloys

Corrosion potential

(Ecorr) / V vs. SCE

Corrosion current density

(Icorr) / μA·cm-2

Corrosion rate

(Vcorr) / mm·a-1

Zn-0.8Li-0.2Ag-1.2406.3302.820
Zn-0.8Li-0.05Ca-0.2Ag-1.2503.1301.396
Zn-0.8Li-0.1Ca-0.2Ag-1.2705.2502.341
Zn-0.8Li-0.05Ca-1.1905.4203.480
Zn-0.8Li-0.05Ca-0.5Ag-1.29012.207.838
Zn-0.8Li-0.05Ca-1Ag-1.2207.5804.866
Table 5  Electrochemical corrosion parameters of the alloy in Hank's solution
Fig.11  Schematic illustration of the corrosion mechanism of Zn-0.8Li-xCa-0.2Ag (a) and Zn-0.8Li-0.05Ca-xAg (b) alloys in Hank's solution
1 Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25(18): 2577
doi: 10.1002/adma.v25.18
2 Ye L, Liu H, Sun C, et al. Achieving high strength, excellent ductility, and suitable biodegradability in a Zn-0.1Mg alloy using room-temperature ECAP [J]. J. Alloys Compd., 2022, 926: 166906
doi: 10.1016/j.jallcom.2022.166906
3 Vidhish N M, Narasaiah N, Chakravarthy P, et al. Hot-extrusion behavior of biodegradable Zn-Mg alloys [J]. Mater. Today: Proc., 2022, 56: 1432
4 Dai Y L, Zhang Y, Liu H, et al. Mechanical strengthening mechanism of Zn-Li alloy and its mini tube as potential absorbable stent material [J]. Mater. Lett., 2019, 235: 220
doi: 10.1016/j.matlet.2018.10.001
5 Guo H, Hu J L, Shen Z Q, et al. In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis [J]. Acta Biomater., 2021, 121: 713
doi: 10.1016/j.actbio.2020.12.017 pmid: 33321221
6 Lin J X, Tong X, Wang K, et al. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68: 76
doi: 10.1016/j.jmst.2020.06.052
7 Zhang W T, Li P, shen G, et al. Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application [J]. Bioact. Mater., 2021, 6(4): 975
doi: 10.1016/j.bioactmat.2020.09.019 pmid: 33102940
8 Li H F, Yang H T, Zheng Y F, et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr [J]. Mater. Design, 2015, 83: 95
9 Jia B, Yang H T, Zhang Z C, et al. Biodegradable Zn-Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies [J]. Bioact. Mater., 2021, 6(6): 1588
doi: 10.1016/j.bioactmat.2020.11.007 pmid: 33294736
10 Wątroba M, Bednarczyk W, Kawałko J, et al. Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material [J]. Mater. Design, 2019, 183: 108154
11 Jia B, Yang H T, Han Y, et al. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications [J]. Acta. Biomater., 2020, 108: 358
doi: S1742-7061(20)30141-0 pmid: 32165194
12 Shi Z Z, Gao X X, Zhang H J, et al. Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties [J]. Bioact. Mater., 2020, 5(2): 210
doi: 10.1016/j.bioactmat.2020.02.010 pmid: 32123774
13 Pan H C, Qin G W, Ren Y P, et al. Achieving high strength in indirectly-extruded binary Mg-Ca alloy containing Guinier-Preston zones [J]. J. Alloys Compd., 2015, 630: 272
doi: 10.1016/j.jallcom.2015.01.068
14 Ramya M, Ravi K R. Biodegradable nanocrystalline Mg-Zn-Ca-Ag alloys as suitable materials for orthopedic implants [J]. Mater. Today: Proc., 2022, 58: 721
15 Simchi A, Tamjid E, Pishbin F, et al. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications [J]. Nanomed. Nanotechnol., 2011, 7(1): 22
doi: 10.1016/j.nano.2010.10.005
16 Baba K, Hatada R, Flege S, et al. Preparation and antibacterial properties of Ag-containing diamond-like carbon films prepared by a combination of magnetron sputtering and plasma source ion implantation [J]. Vac., 2013, 89: 179
doi: 10.1016/j.vacuum.2012.04.015
17 Shao W, Zhao Q. Influence of reducers on nanostructure and surface energy of silver coatings and bacterial adhesion [J]. Surf. Coat. Tech., 2010, 204(8): 1288
doi: 10.1016/j.surfcoat.2009.10.015
18 Liu Z L, Qiu D, Wang F, et al. The grain refining mechanism of cast zinc through silver inoculation [J]. Acta. Mater., 2014, 79: 315
doi: 10.1016/j.actamat.2014.07.026
19 Pinc J, Čapek J, Kubásek J, et al. Microstructure and mechanical properties of the potentially biodegradable ternary system Zn-Mg0.8-Ca0.2 [J]. Procedia Struct., 2019, 23: 21
20 Huang H, Liu H, Wang L S, et al. Revealing the effect of minor Ca and Sr additions on microstructure evolution and mechanical properties of Zn-0.6Mg alloy during multi-pass equal channel angular pressing [J]. J. Alloys Compd., 2020, 844: 155923
doi: 10.1016/j.jallcom.2020.155923
21 Shi Z Z, Li H Y, Xu J Y, et al. Microstructure evolution of a high-strength low-alloy Zn-Mn-Ca alloy through casting, hot extrusion and warm caliber rolling [J]. Mater. Sci. Eng. A, 2020, 771: 138626
doi: 10.1016/j.msea.2019.138626
22 Zou Y L, Chen X, Chen B. Effects of Ca concentration on degradation behavior of Zn-xCa alloys in Hank's solution [J]. Mater. Lett., 2018, 218: 193
doi: 10.1016/j.matlet.2018.02.018
23 Gong H B, Wang K, Strich R, et al. In vitro biodegradation behavior, propertiesmechanical, and cytotoxicity of biodegradable Zn-Mg alloy [J]. J. Biomed. Mater. Res. B, 2015, 103(8): 1632
doi: 10.1002/jbm.b.v103.8
[1] XU Long, LI Jiwen, CUI Chuanyu, LU Qi, YANG Hao, ZHAO Congcong. Corrosion Behavior of Cold Sprayed Zn15Al Alloy Coating on Q235 Carbon Steel in NaCl Aqueous Solution[J]. 材料研究学报, 2024, 38(3): 208-220.
[2] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[3] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[4] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[5] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[6] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[7] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[8] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[9] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[10] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[11] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[12] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[13] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[14] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] YU Cong, CHEN Leping, JIANG Hongxiang, ZHOU Quan, YANG Chenggang. Effect of Deep Cryogenic-Aging Treatment on Microstructure and Mechanical Properties of 7075 Al-alloy[J]. 材料研究学报, 2023, 37(2): 120-128.
No Suggested Reading articles found!