Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (8): 603-613    DOI: 10.11901/1005.3093.2022.289
ARTICLES Current Issue | Archive | Adv Search |
Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation
XIONG Shiqi1,2, LIU Enze1(), TAN Zheng1, NING Likui1, TONG Jian1, ZHENG Zhi1, LI Haiying1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation. Chinese Journal of Materials Research, 2023, 37(8): 603-613.

Download:  HTML  PDF(20187KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructural evolution of DZ125L superalloy during solution heat treatment in the range of 1230℃ to 1260℃ was investigated by optical microscope (OM), scanning electron microscope (SEM) and electron probe microanalyser (EPMA). The results show that during solution heat treatment, MC carbide transformed from cursive-script like to granular or short rod like, and the dissolution of γ′ phase in the dendritic core was faster than that in the interdendritic region. The area fraction of γ′ phase and γ/γ′ eutectic decreased, and the average size of γ′ phase in the interdendritic region increased with the increase of heating time at 1240℃ and 1250℃, while the area fraction of γ′ phase and γ/γ′ eutectic, and the average size of γ′ phase in the interdendritic region decreased firstly, then increased, and decrease lastly at 1230℃. The abnormal increase of area fraction of γ′ phase and γ/γ′ eutectic during solution heat treatment at 1230℃ was caused by the rapid dissolution of γ′ phase in the dendritic core, which led to the diffusion of Ta from dendrite core to interdendritic region through γ matrix.

Key words:  metallic materials      DZ125L superalloy      solution heat treatment      microstructure      γ′ phase      γ/γ′ eutectic     
Received:  23 May 2022     
ZTFLH:  TG142  
Corresponding Authors:  LIU Enze, Tel: (024)23971143, E-mail: nzliu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.289     OR     https://www.cjmr.org/EN/Y2023/V37/I8/603

ElementsCCrCoWMoTaAlTiBNi
Content0.0879.0110.07.022.013.505.132.250.0072Bal.
Table 1  Mass fraction of DZ125L superalloy (mass fraction,%)
Fig.1  Microstructure of the as-cast DZ125L superalloy (a) dendritic structure, (b) γ' phase at dendrite core, (c) γ' phase at interdendrite, (d) γ/γ' eutectic, (e) carbide
ElementsAlTiCrCoNiMoTaWC
Eutectic5.373.728.859.3761.680.405.365.26-
Carbide0.0515.911.470.954.701.8648.8913.5112.65
Table 2  Mass fraction of γ/γ' eutectic and MC carbide of the as-cast DZ125L superalloy tested by EDS (mass fraction,%)
Fig.2  DSC heating curve of the as-cast DZ125L superalloy
Fig.3  Microstructure of the as-cast DZ125L superalloy at 1280℃ (a), 1290℃ (b), 1300℃ (c) keeping for 15 mins and then quenched in water
Fig.4  Morphologies and EDS mapping results of MC carbide after solution heat treatment (1250℃ for 2 h) (a) and (b) morphologies of MC carbide, (c) Ti, (d) Ta, (e) Cr, (f) W
Fig.5  Microstructure of DZ125L superalloy after solution heat treatment (a-1) to (a-4) 1230℃ from 1 h to 8 h, (b-1) to (b-4) 1230℃ from 1 h to 8 h, (c-1) to (c-4) 1250℃ from 1 h to 8 h, (d-1) to (d-3) 1260℃ from 1 h to 4 h
Fig.6  Area fraction of γ' phase and average size of γp' phase after solution heat treatment
Fig.7  Evolution of γ' phase size distribution as a fuction of time at (a) 1230℃, (b) 1240℃, (c) 1250℃
Fig.8  Morphologies of γ' phase after solution heat treatment: (a) 1240℃ for 1 h, (b) 1250℃ for 1 h
Fig.9  Morphologies of γ/γ' eutectics after solution heat treatment (a) 1230℃ for 1 h, (b) 1230℃ for 2 h, (c) and (d) 1240℃ for 4 h, (e) 1250℃ for 2 h
Fig.10  Area fraction of γ/γ' eutectic after solution heat treatment
Fig.11  Homogenization kinetic curves of Ti (a) and Ta (b)
Fig.12  Segregation coefficient curve of Ta element in γ matrix at 1230℃
Fig.13  Shematic illustration of the abnormal increase in area fraction of γ' phase and γ/γ' eutectic during solution heat treatment at 1230℃
1 Guan X R, Liu E Z, Zheng Z, et al. Solidification behavior and segregation of Re-containing cast Ni-base superalloy with different Cr content [J]. J. Mater. Sci. Technol., 2011, 27(2): 113
doi: 10.1016/S1005-0302(11)60035-2
2 Tan Y G, Liu F, Zhang A W, et al. Element segregation and solidification behavior of a Nb, Ti, Al Co-strengthened superalloy ЭК151 [J]. Acta Metall. Sin., 2019, 32(10): 1298
doi: 10.1007/s40195-019-00894-3
3 Gu Y, Yang S F, Zhao P, et al. Solidification segregation and carbide precipitation behavior of nickel-based superalloy GH4738 [J]. China Metall., 2021, 31(7): 13
谷 雨, 杨树峰, 赵 朋 等. 镍基高温合金GH4738的凝固偏析和碳化物析出行为 [J]. 中国冶金, 2021, 31(7): 13
4 Hua H Y, Xie J, Shu D L, et al. Influence of W content on the microstructure of nickel base superalloy with high W content [J]. Acta Metall. Sin., 2020, 56(2): 161
doi: 10.11900/0412.1961.2019.00193
华涵钰, 谢 君, 舒德龙 等. W含量对一种高W镍基高温合金显微组织的影响 [J]. 金属学报, 2020, 56(2): 161
doi: 10.11900/0412.1961.2019.00193
5 Jia C L, Ge C C, Yan Q Z. Microstructure evolution and mechanical properties of disk superalloy under multiplex heat treatment [J]. Mater. Sci. Eng., 2016, 659A: 287
6 Wu Y T, Li C, Li Y F, et al. Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review [J]. Int. J. Miner. Metall. Mater., 2021, 28(4): 553
doi: 10.1007/s12613-020-2177-y
7 Sun Y H, Ai C, Zhang X F, et al. Research progress on solution treatment regimes of Ni based single crystal superalloy [J]. Mater. Rev., 2019, 33(21): 3630
孙阳辉, 艾 诚, 张晓峰 等. 镍基单晶高温合金固溶处理制度的研究进展 [J]. 材料导报, 2019, 33(21): 3630
8 Li X X, Jia C L, Zhang Y, et al. Incipient melting phase and its dissolution kinetics for a new superalloy [J]. Trans. Nonferrous Met. Soc. China, 2020, 30(8): 2107
doi: 10.1016/S1003-6326(20)65364-X
9 Huang H L, Liu G Q, Wang H, et al. Dissolution behavior and kinetics of γ' phase during solution treatment in powder metallurgy nickel-based superalloy [J]. Metall. Mater. Trans., 2020, 51A(3) : 1075
10 Li H M, Nie Y H, Zhang X, et al. Effects of homogenization treatment on microstructure of as-cast GH625 alloy [J]. Trans. Mater. Heat Treat., 2019, 40(3): 75
李红梅, 聂义宏, 张 鑫 等. 均匀化处理对铸态GH625合金组织的影响 [J]. 材料热处理学报, 2019, 40(3): 75
doi: 10.13289/j.issn.1009-6264.2018-0432
11 Chen K, Rui S Y, Wang F, et al. Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk [J]. Int. J. Miner. Metall. Mater., 2019, 26(7): 889
doi: 10.1007/s12613-019-1802-0
12 Xie J, Yu J J, Sun X F, et al. High-cycle fatigue behavior of K416B Ni-based casting superalloy at 700℃ [J]. Acta Metall. Sin., 2016, 52(3): 257
谢 君, 于金江, 孙晓峰 等. K416B镍基铸造高温合金的700℃高周疲劳行为 [J]. 金属学报, 2016, 52(3): 257
13 Ma W Y, Li S S, Qiao M, et al. Effect of heat treatment on microstructure and stress rupture life of Ni-base single crystal superalloy [J]. Chin. J. Nonferrous Met., 2006, 16(6): 937
doi: 10.1016/S1003-6326(06)60355-5
马文有, 李树索, 乔 敏 等. 热处理对镍基单晶高温合金微观组织和高温持久性能的影响 [J]. 中国有色金属学报, 2006, 16(6): 937
14 Zhu O, Li Y L, Zhang Y, et al. Heat treatment process for single-crystal superalloy used in aeroengines [J]. Foundry Technol., 2013, 34(9): 1137
朱 鸥, 李玉龙, 张 燕 等. 航空发动机用单晶铸造高温合金热处理工艺 [J]. 铸造技术, 2013, 34(9): 1137
15 Fuchs G E. Solution heat treatment response of a third generation single crystal Ni-base superalloy [J]. Mater. Sci. Eng., 2001, 300A(1-2) : 52
doi: 10.1016/S0921-5107(97)00140-2
16 Zhang Y B, Liu L, Huang T W, et al. Investigation on remelting solution heat treatment for nickel-based single crystal superalloys [J]. Scr. Mater., 2017, 136: 74
doi: 10.1016/j.scriptamat.2017.04.016
17 Sani S A, Arabi H, Kheirandish S, et al. Investigation on the homogenization treatment and element segregation on the microstructure of a γ/γ'-cobalt-based superalloy [J]. Int. J. Miner. Metall. Mater., 2019, 26(2): 222
doi: 10.1007/s12613-019-1727-7
18 Zhang Y B, Liu L, Huang T W, et al. Investigation on a ramp solution heat treatment for a third generation nickel-based single crystal superalloy [J]. J. Alloys Compd., 2017, 723: 922
doi: 10.1016/j.jallcom.2017.06.305
19 Yu Z H, Fei Z B, Yan Y W, et al. Effect of solution heat treatment on microstructure and segregation of carbon-containing nickel-based single crystal AM3 superalloy [J]. Rare Met. Mater. Eng., 2022, 51(3): 806
余竹焕, 费祯宝, 阎亚雯 等. 固溶热处理对含碳镍基单晶高温合金AM3组织和偏析的影响 [J]. 稀有金属材料与工程, 2022, 51(3): 806
20 Hegde S R, Kearsey R M, Beddoes J C. Designing homogenization-solution heat treatments for single crystal superalloys [J]. Mater. Sci. Eng., 2010, 527A(21-22) : 5528
21 Liu X G, Lei Q, Wang L, et al. Microstructural evolution of a third-generation single crystal superalloy DD33 during solution treatment [J]. Chin. J. Mater. Res., 2014, 28(6): 407
doi: 10.11901/1005.3093.2013.848
刘心刚, 雷 强, 王 莉 等. 第三代单晶高温合金DD33固溶处理中组织的演变 [J]. 材料研究学报, 2014, 28(6): 407
doi: 10.11901/1005.3093.2013.848
22 Zhang S H, Xie G, Dong J S, et al. Investigation on eutectic dissolution behavior of single crystal superalloy by differential scanning calorimetry [J]. Acta Metall. Sin., 2021, 57(12): 1559
doi: 10.11900/0412.1961.2021.00093
张少华, 谢 光, 董加胜 等. 单晶高温合金共晶溶解行为的差热分析 [J]. 金属学报, 2021, 57(12): 1559
doi: 10.11900/0412.1961.2021.00093
23 Lee H S, Kim D H, Kim D S, et al. Microstructural changes by heat treatment for single crystal superalloy exposed at high temperature [J]. J. Alloys Compd., 2013, 561: 135
doi: 10.1016/j.jallcom.2013.01.129
24 Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2010: 392
郭建亭. 高温合金材料学(下册) [M]. 北京: 科学出版社, 2010: 392
25 Wasson A J, Fuchs G E. Microstructural evolution of a carbon modified single crystal Ni-base superalloy [J]. Mater. Charact., 2012, 74: 11
doi: 10.1016/j.matchar.2012.06.008
26 Chen Q Z, Jones N, Knowles D M. The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperatures [J]. Acta Mater., 2002, 50(5): 1095
doi: 10.1016/S1359-6454(01)00410-4
27 Li N N, Chen Y, Chen X, et al. Preparation method and diffusion mechanism of Fe-Al coating on Q235 low carbon steel by pack aluminizing [J]. Chin. J. Mater. Res., 2021, 35(8): 572
doi: 10.11901/1005.3093.2020.449
李宁宁, 陈 旸, 陈 希 等. 包埋渗铝法制备Fe-Al渗层及其扩散机制 [J]. 材料研究学报, 2021, 35(8): 572
doi: 10.11901/1005.3093.2020.449
28 Zhao F, Hu H, Rong W, et al. Analysis on the factors affecting the performance of 6061aluminum alloy extruded profiles [J]. Nonferrous Mater. Eng., 2019, 40(6): 21
赵 芳, 胡 皓, 荣 伟 等. 6061铝合金挤压型材性能影响因素分析 [J]. 有色金属材料与工程, 2019, 40(6): 21
29 Masoumi F, Jahazi M, Shahriari D, et al. Coarsening and dissolution of γ' precipitates during solution treatment of AD730TM Ni-based superalloy: mechanisms and kinetics models [J]. J. Alloys Compd., 2016, 658: 981
doi: 10.1016/j.jallcom.2015.11.002
30 Doi M, Miyazaki T. Effect of elastic interaction energy on the distribution of coherent precipitate particles in nickel-base alloys [A]. Superalloys 1992 [C]. Warrendale: TMS, 1992: 537
31 Hazotte A, Grosdidier T, Denis S. γ' precipitate splitting in nickel-based superalloys: a 3-D finite element analysis [J]. Scr. Mater., 1996, 34(4): 601
doi: 10.1016/1359-6462(95)00554-4
32 Mao Z G, Sudbrack C K, Yoon K E, et al. The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy [J]. Nat. Mater., 2007, 6(3): 210
pmid: 17322868
33 Hou Q, Tao Y, Jia J, et al. Evolution of γ' phases of the fourth generation powder metallurgy superalloy FGH4102 during long-term aging [J]. Powder Metall. Ind., 2020, 30(5): 38
侯 琼, 陶 宇, 贾 建 等. 第四代粉末高温合金FGH4102长期时效过程中γ'相演变规律 [J]. 粉末冶金工业, 2020, 30(5): 38
34 Yang F X, Liu E Z, Zheng Z, et al. Influence of Ti content on microstructure, mechanical properties and castability of directionally solidified superalloy DZ125L [J]. Mater. Des., 2014, 61: 41
doi: 10.1016/j.matdes.2014.04.059
35 Hillert M. Diffusion and interface control of reactions in alloys [J]. Metall. Trans., 1975, 6A(1) : 5
36 Karunaratne M S A, Cox D C, Carter P, et al. Modelling of the microsegregation in CMSX-4 superalloy and its homogenisation during heat treatment [A]. Superalloys 2000 [C]. Warrendale: TMS, 2000: 263
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!