Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (8): 614-624    DOI: 10.11901/1005.3093.2022.494
ARTICLES Current Issue | Archive | Adv Search |
Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy
CHEN Jingjing1(), ZHAN Huimin2, WU Hao3, ZHU Qiaolin1, ZHOU Dan1, LI Ke1
1.School of Mechanical and Electrical Engineering, Nanchang Institute of Technology, Nanchang 330044, China
2.School of Computer and Information Engineering, Nanchang Institute of Technology, Nanchang 330044, China
3.Beijing Institute of Space Launch Technology, Beijing 100048, China
Cite this article: 

CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy. Chinese Journal of Materials Research, 2023, 37(8): 614-624.

Download:  HTML  PDF(19027KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The tensile performance of high-entropy nanocrystalline- and single crystal-CoNiCrFeMn alloy, as well as polycrystalline- and single crystal-Ni metal, was comparatively assessed, while the evolution of their microstructures and the deformation induced difects such as dislocations, voids and cracks etc. with the deformation process and temperature was searched in an attempt to reveal the relationship between their mechanical performance and the aforesaid evolution. Results show that when the temperature lifting from 10 K to 1000 K, the yield stress of the high-entropy nanocrystalline CoNiCrFeMn alloy decreases by 14.9%, 13.1% and 17.4%, whose corresponding temperature is 10 K, 300 K and 1000 K respectively, in comparision to those of the high-entropy single crystal ones; While the tensile strength of the polycrystalline Ni decreased by 38.9%, 30% and 32.3% of that for single crystalline Ni, whose corresponding temperature is 10 K, 300 K and 1000 K respectively; Likewise, the elastic modulus and yield strength of the high entropy nanocrystalline alloy and nanocrystalline nickel decrease linearly with the increasing temperature. However, the overall decrease percentage of the value for yield stress of the polycrystalline nickel is greater than that of the high entropy single crystal alloy, owing to the exist of internal stresses, cracks and cavities induced by grain boundary defects of the former. It is thought that the geometry shape and size of the formed cavities and cracks are the fundamental cause responsible to the sharp decline of the mechanical properties of the similar materials in practical application, and also to the significant difference of the tensile mechanical properties between the high entropy nanocrystalline alloy and the nanocrystalline nickel. The applied tensile load may result in the formation of a large number of stacking faults within grains of polycrystalline materials, and thus the large grains are easy to be differentiated into fine grains with the increasing temperature, in other word, to realize the grain refinement. In addition, the high entropy polycrystalline alloy and polycrystalline nickel are more likely to generate latest dislocations at grain boundary edge induced by internal stresses, hence, the dislocation distribution is consistent with the internal stress distribution. With the increasing temperature, the distribution area of grain boundaries within polycrystalline materials will be further expanded due to thermal expansion, therefore, the area with internal stresses will enlarge accordingly, in comparison to that at lower temperature.

Key words:  metallography      void crack      grain size      temperature response      tensile mechanical performance      molecular simulation     
Received:  13 September 2022     
ZTFLH:  O484  
Fund: University-level Research Center of Friction and Wear and Protective Lubrication of Mechanical Table Interface, Nanchang Institute of Technology, and Science and Technology Research Project of Education Department of Jiangxi Province(GJJ2202705);University-level Research Center of Friction and Wear and Protective Lubrication of Mechanical Table Interface, Nanchang Institute of Technology, and Science and Technology Research Project of Education Department of Jiangxi Province(GJJ212101);University-level Research Center of Friction and Wear and Protective Lubrication of Mechanical Table Interface, Nanchang Institute of Technology, and Science and Technology Research Project of Education Department of Jiangxi Province(GJJ219310);Nanchang Key Laboratory Construction Project of Jiangxi Province, China(2020-NCZDSY-005);Nanchang Institute of Technology, and School Project Supported by Nanchang Institute of Technology(NLZK-22-07);Nanchang Institute of Technology, and School Project Supported by Nanchang Institute of Technology(NLZK-22-01)
Corresponding Authors:  CHEN Jingjing, Tel: 15750843783, E-mail: chenjingjingfzu@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.494     OR     https://www.cjmr.org/EN/Y2023/V37/I8/614

Fig.1  Atomic physical model of polycrystal CoNiCrFeMn high entropy alloy at stretched process
(A) three-dimensional model of CoNiCrFeMn high entropy alloy; (B) grain boundary model of CoNiCrFeMn high entropy alloy
Fig.2  Temperature influence on mechanical property of single crystal and polycrystal CoNiCrFeMn high entropy alloy (average grain size 0.76 nm) during tensile (A) single crystal and polycrystal CoNiCrFeMn high entropy alloy; (B) polycrystal line high entropy alloy; (C) effect of temperature on yield strength; (D) effect of temperature on elastic modulus
Fig.3  Temperature influence on mechanical property of single crystal and polycrystal (average grain size 0.76 nm) Ni during tensile
Fig.4  Average grain size influence on mechanical property of polycrystal Ni and polycrystal CoNiCrFeMn high entropy alloy during tensile with ambient temperature 300 K
Fig.5  Average grain size influence on void defects of polycrystal Ni (A) and polycrystal CoNiCrFeMn (B) with ambient temperature 300 K and strain is equal to 0.16
Fig.6  Void defects evolution of polycrystal Ni at (A) 10 K, (B) 300 K, (C) 1000 K under different tensile strains
Fig.7  Graph of grain refinement evolution and crack propagation failure for polycrystal nickel at temperature with 1000 K
Fig.8  Micro-structure evolution of polycrystal CoNiCrFeMn high entropy alloy at (A) 10 K; (B)300 K; (C) 1000 K under different tensile strains
Fig.9  Comparison of micro-structure between nanocrystalline nickel and nanocrystalline high entropy alloy with ε=0.3 at room temperature (A, B), and the curve of the radial distribution function with temperature (C, D)
Fig.10  Dislocation distribution types and the change of the length of dislocation with temperature varies for nanocrystalline CoNiCrFeMn high entropy alloy and nanocrystalline nickel
Fig.11  The stress distribution of nanocrystalline CoNiCrFeMn high entropy and nanocrystalline nickel under tensile strain with ε=0.3 and temperature of (A) 10 K; (B)300 K; (C) 1000 K
1 Fu W J, Huang Y J, Sun J F, et al. Strengthening CrFeCoNi-Mn0.75Cu0.25 high entropy alloy via laser shock peening [J]. Int. J. Plast., 2022, 154: 103296
doi: 10.1016/j.ijplas.2022.103296
2 Tran N D, Saengdeejing A, Suzuki K, et al. Stability and thermodynamics properties of CrFeNiCoMn/Pd high entropy alloys from first principles [J]. J. Phase Equilib. Diffus., 2021, 42: 606
doi: 10.1007/s11669-021-00900-1
3 Gorban V F, Andreev A A, Chikryzhov A M, et al. The phase composition and mechanical properties of vacuum coatings produced from equiatomic CrFeCoNiMn alloy [J]. Powder Metall. Met. Ceram., 2019, 58: 58
doi: 10.1007/s11106-019-00047-2
4 Zheng T F, Lv J C, Wu Y, et al. Effects of stacking fault energy on the deformation behavior of CoNiCrFeMn high-entropy alloys: a molecular dynamics study [J]. Appl. Phys. Lett., 2021, 119: 201907
doi: 10.1063/5.0069108
5 Tripathi P K, Chiu Y C, Bhowmick S, et al. Temperature-dependent superplasticity and strengthening in CoNiCrFeMn high entropy alloy nanowires using atomistic simulations [J]. Nanomaterials, 2021, 11: 2111
doi: 10.3390/nano11082111
6 Li C, Xue Y F, Hua M T, et al. Microstructure and mechanical properties of Al x Si0.2CrFeCoNiCu1- x high-entropy alloys [J]. Mater. Des., 2016, 90: 601
doi: 10.1016/j.matdes.2015.11.013
7 Wang F J, Zhang Y, Chen G L. Atomic packing efficiency and phase transition in a high entropy alloy [J]. J. Alloys Compd., 2009, 478: 321
doi: 10.1016/j.jallcom.2008.11.059
8 Sun S J, Tian Y Z, Lin H R, et al. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement [J]. Mater. Sci. Eng., 2018, 712A: 603
9 Lee D H, Seok M Y, Zhao Y K, et al. Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys [J]. Acta Mater., 2016, 109: 314
doi: 10.1016/j.actamat.2016.02.049
10 Juan C C, Tsai M H, Tsai C W, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Mater. Lett., 2016, 184: 200
doi: 10.1016/j.matlet.2016.08.060
11 Seol J B, Bae J W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Mater., 2018, 151: 366
doi: 10.1016/j.actamat.2018.04.004
12 Du X, Lu X C, Shuang S Y, et al. Cyclic plasticity of CoCrFeMnNi high-entropy alloy (HEA): a molecular dynamics simulation [J]. Int. J. Appl. Mech., 2021, 13: 2150006
doi: 10.1142/S175882512150006X
13 Amar A, Li J F, Xiang S, et al. Additive manufacturing of high-strength CrMnFeCoNi-based High Entropy Alloys with TiC addition [J]. Intermetallics, 2019, 109: 162
doi: 10.1016/j.intermet.2019.04.005
14 Ding L, Wang H X, Quan X M. Microstructure and abrasion resistance of laser cladding CoCrFeNiTiNbB1.25 high-entropy alloys coatings treated by aging [J]. Sci. Adv. Mater., 2021, 13: 1479
doi: 10.1166/sam.2021.4010
15 Huang T D, Jiang L, Zhang C L, et al. Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy [J]. Sci. China Technol. Sci., 2018, 61: 117
doi: 10.1007/s11431-017-9134-6
16 Xiang S, Zhang L, Liu X, et al. Effect of laser melting deposition process on microstructure and mechanical properties of CrMnFeCoNi high-entropy alloys [J]. Trans. Mater. Heart Treat., 2018, 39: 29
向 硕, 张 雷, 刘 学 等. 激光熔化沉积工艺对CrMnFeCoNi高熵合金组织和性能的影响 [J]. 材料热处理学报, 2018, 39: 29
17 Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J]. Acta Mater., 2016, 118: 152
doi: 10.1016/j.actamat.2016.07.038
18 Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Mater., 2013, 61: 5743
doi: 10.1016/j.actamat.2013.06.018
19 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
20 Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
21 Lee B J, Shim J H, Baskes M I. Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method [J]. Phys. Rev., 2003, 68B: 144112
22 Dong B, Wang X M, Zhu Z L. Study on the mechanical performance and microstructure of FeCoCrCuNi high-entropy alloy with crack and void by molecular dynamics simulations [J]. J. Atom. Mol. Phys., 2020, 37: 591
董 斌, 王雪梅, 朱子亮. FeCoCrCuNi高熵合金裂纹及孔洞结构的力学与微观构象演化的分子动力学模拟研究 [J]. 原子与分子物理学报, 2020, 37: 591
23 Fang Q H, Chen Y, Li J, et al. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys [J]. Int. J. Plast., 2019, 114: 161
doi: 10.1016/j.ijplas.2018.10.014
24 Xiang H G, Li H T, Fu T, et al. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Mater., 2017, 138: 131
doi: 10.1016/j.actamat.2017.06.045
25 Qian Y, Shang F L, Wan Q, et al. The mechanism of plastic deformation in intact and irradiated GaN during indentation: a molecular dynamics study [J]. Comput. Mater. Sci., 2018, 149: 230
doi: 10.1016/j.commatsci.2018.03.041
26 Goel S, Luo X C, Reuben R L. Shear instability of nanocrystalline silicon carbide during nanometric cutting [J]. Appl. Phys. Lett., 2012, 100: 231902
doi: 10.1063/1.4726036
27 Li Y C, Jiang W G, Zhou Y. Molecular dynamics simulations of the tensile mechanical response of single crystal/polycrystalline nickel [J]. Rare Met. Mater. Eng., 2020, 49: 2372
李源才, 江五贵, 周 宇. 单晶/多晶镍拉伸力学性能的分子动力学模拟 [J]. 稀有金属材料与工程, 2020, 49: 2372
28 Sun S J, Tian Y Z, Lin H R, et al. Temperature dependence of the Hall-Petch relationship in CoCrFeMnNi high-entropy alloy [J]. J. Alloys Compd., 2019, 806: 992
doi: 10.1016/j.jallcom.2019.07.357
29 Guo J, Chen J J, Wang Y Q. Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: a molecular dynamics study [J]. Ceram. Int., 2020, 46: 12686
doi: 10.1016/j.ceramint.2020.02.035
[1] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[2] NING Bo, LI Zhichao, WU Huibin, ZHANG Bingjun, HUANG Manli, DING Chao. Mechanism of Improving Low Temperature Impact Toughness of 09MnNi Vessel Steel[J]. 材料研究学报, 2022, 36(9): 660-666.
[3] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Effect of Quenching Cooling Rate on Mechanical Properties of a Ni-Cr-Mo-B Steel for Offshore Platform[J]. 材料研究学报, 2022, 36(4): 250-260.
[4] HU Ruihang, YANG Zhen, LEI Qijun, LI Xinyang, DONG Ziyu, ZHANG Xiaotong, FAN Hongyu, NIU Jinhai. Effect of Helium Ions Irradiation on Stability of Nano-tungsten Whiskers[J]. 材料研究学报, 2022, 36(11): 850-854.
[5] XUAN Jingfan, FAN Hongyu, BAI Ying, HU Ruihang, LI Xinyang, TAO Wenchen, NI Weiyuan, NIU Jinhai. Etching Behavior of Tungsten under Irradiation of Low Energy and High Flux Hydrogen Ions[J]. 材料研究学报, 2020, 34(9): 659-664.
[6] SUN Jingli,ZHOU Haitao,CHEN Li,WU Hong,LIU Weili,YAO Fei,XU Yuling. Grain Size Effect on Microstructure Evolution and Properties of 304 Austenitic Stainless Steel[J]. 材料研究学报, 2020, 34(3): 231-240.
[7] SHI Yuanji,YU Linhui,YU Zhaopeng,CHENG Gong,WU Xiaochun,TENG Hongchun. High Temperature Stability and Thermal Fatigue Behavior of DM Hot Working Die Steel[J]. 材料研究学报, 2020, 34(2): 125-136.
[8] Ying LI,Xiaolong CHEN,Chao SUN,Jun GONG. Preparation and Performance of LnMgAl11O19(Ln=La, Nd) Powders for Thermal Barrier Coating[J]. 材料研究学报, 2019, 33(6): 409-418.
[9] Jian TU,Lei LIU,Shirun DING,Jianbo LI,Zhiming ZHOU,Anping DONG,Can HUANG. Effect of Degree and Temperature of Pre-deformation on Deformation Mechanism and Subsequent Recrystallization Behavior of High-entropy Alloy CoCrFeMnNi[J]. 材料研究学报, 2019, 33(6): 427-434.
[10] WU Liang,FAN Hongyu,NI Weiyuan,XU Yang,BAO Sen,ZHANG Yuwei,ZHOU Siqian,NIU Jinhai. Self-protection Performance of Nano-fuzz Formed on W-plate Surface Due to He+ Irradiation[J]. 材料研究学报, 2019, 33(11): 809-814.
[11] Zhiling HAO,Hongyu FAN,Jiayu GUO,Tingting HU,Meng LI,Hejing CUI,Bixuan ZHANG. He Plasma Assisted Preparation of Nanostructure Tungsten Materials[J]. 材料研究学报, 2017, 31(6): 415-421.
[12] Luhai ZHOU, Xicheng WEI, Chunyan WANG, Jun LU, Wurong WANG. Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel[J]. 材料研究学报, 2017, 31(11): 833-838.
[13] JIA Shujun, WANG Yuanfang, TAN Fengliang, LIU Qingyou. Microstructure and Toughness of Heat-affected Zone of Weld Joint for Pipeline Steels with High Deformability[J]. 材料研究学报, 2016, 30(7): 517-523.
[14] Tingting DONG,Qudong WANG,Wei GUO,Jianfeng LIU,Haiyan JIANG. Microstructure and Mechanical Property of Pure Magnesium Processed by Cyclic Extrusion Compression[J]. 材料研究学报, 2015, 29(8): 569-575.
[15] Wei PAN,Zulai LI,Quan SHAN,Yehua JIANG,Zhiyang FENG,Rong ZHOU. Effect of Heat Treatment Process on Mechanical Properties of a Medium Carbon Low Alloy Steel[J]. 材料研究学报, 2015, 29(6): 422-428.
No Suggested Reading articles found!