Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (8): 590-602    DOI: 10.11901/1005.3093.2022.279
ARTICLES Current Issue | Archive | Adv Search |
Improved Design of CLF-1 Steel Based on Thermodynamic Simulation
YANG Dongtian1,2, XIONG Liangyin1,2(), LIAO Hongbin3, LIU Shi1,2
1.Special Alloy Research Department, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Southwestern Institute of Physics, Institute for Fusion Science, Chengdu 610225, China
Cite this article: 

YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation. Chinese Journal of Materials Research, 2023, 37(8): 590-602.

Download:  HTML  PDF(17046KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The composition and quantity of the equilibrium precipitated phases in CLF-1 steel were calculated by means of Thermo-calc software. The variation of element distribution in each equilibrium phase with temperature, the influence of main elements on the precipitation amount and temperature of each phase, and the partition of elements among equilibrium phases were investigated. Meanwhile, the size and number density of the precipitated phases were characterized by transmission electron microscopy (TEM). Thermodynamic calculation results show that the partition amount of C in TaC phase only accounts for about 3.3% of that in M23C6. The heterogeneous partition of C is one of the main reasons for the low MX phase precipitation in CLF-1 steel. Without introducing other strong carbide-forming elements, the partition amount of C in MX phase cannot be increased by increasing the C content. The increase of Cr content will reduce the precipitation temperature of TaC, so the Cr content should not exceed 8.8%. The increase of W content will reduce the amount of MX precipitation, so it should not exceed 1.5%. Mn has no significant effect on the amount of every precipitated phase. Finally, N content should not exceed 0.02%. The addition of 0.2%Ti in CLF-1 steel can increase the precipitation amount of MX phase at 650℃ by 9 times, and increase the partition amount of C by 15 times. The experiment result shows that: the addition of 0.2% Ti can reduce the number density of M23C6 by 21.5%, reduce its average size by 20 nm, and increase the number density of MX phase by 4.7 times. These results strongly verified the promoting effect of Ti element on MX phase precipitation.

Key words:  foundational discipline in materials science      phase transition and phase diagram      improvement of CLF-1 steel      thermo-Calc calculation      MX phase      elemental partitioning fraction     
Received:  16 May 2022     
ZTFLH:  TG142  
Corresponding Authors:  XIONG Liangyin, Tel: 13840426146, E-mail: lyxiong@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.279     OR     https://www.cjmr.org/EN/Y2023/V37/I8/590

CLF-1 steelCCrWMnNTaVTiFe
1#0.18.51.50.50.0150.080.240Bal.
2#0.138.381.431.030.00720.0760.240.2Bal.
Table 1  Chemical composition of CLF-1 steel (mass fraction,%)
Fig.1  Variations of equilibrium precipitated phases in CLF-1 steel with temperature
Fig.2  Variations of precipitation temperature of each precipitation phase in CLF-1 steel with alloying element content
Precipitated phaseElement
TaCTa、C、V、Cr、N、W
VNV、N、Ta、C、Cr、W
M23C6Cr、Fe、W、C、V、Mn
LavesW 、Fe、Cr、Ta 、Mn
Table 2  Main alloying elements in the precipitation phase of CLF-1 steel
Fig.3  Variations of element concentration in each precipitation phase of CLF-1 steel with temperature (a) TaC phase; (b) VN phase; (c) M23C6; (d) Laves phase
Fig.4  Variations of partitioning fractions (atomic fraction) of Fe, Cr and W in matrix
Fig.5  Variations of partitioning fractions (atomic fraction) of Fe, Cr, W and C in M23C6 with temperature
Fig.6  Variations of partitioning fractions (atomic fraction) of C, Ta, N and V in MX with temperature (a) VN phase; (b) TaC phase
Fig.7  Variations of partitioning fractions (atomic fraction) of C, Ta, N and V in matrix with temperature
Fig.8  Influence of C content on precipitation volume fraction of each phase in CLF-1 steel (a) TaC phase; (b) VN phase; (c) M23C6; (d) Laves phase
Fig.9  Influence of N content on precipitation volume fraction of each phase in CLF-1 steel (a) TaC phase; (b) VN phase; (c) M23C6; (d) Laves phase
Fig.10  Influence of Cr content on precipitation volume fraction of each phase in CLF-1 steel (a) TaC phase; (b) VN phase; (c) M23C6; (d) Laves phase
Fig.11  Influence of W content on precipitation volume fraction of each phase in CLF-1 steel (a) TaC phase; (b) VN phase; (c) M23C6; (d) Laves phase
Fig.12  Influence of Mn content on precipitation volume fraction of each phase in CLF-1 steel (a) TaC phase; (b) VN phase; (c) M23C6; (d) Laves phase
Fig.13  Influence of Ti content on precipitation volume fraction of each phase in CLF-1 steel (a) MX phase; (b) M23C6; (c) Laves phase
Fig.14  Influence of Ti addition on the precipitation volume of M23C6 and MX phases in CLF-1 steel
Fig.15  Variation of precipitates of M23C6 and MX in CNAS steel with temperature
Fig.16  Variations of partitioning fractions (atomic fraction) of C, Ta, N, V and Ti in MX with temperature
Fig.17  TEM results of M23C6 precipitate in 1# specimen (a) TEM bright filed image of the 1# specimen, (b) the electron diffraction pattern of the marked precipitate, (c) the composition mapping of the precipitate
Fig.18  TEM results of MC precipitate in 1# specimen (a) TEM bright filed image of the 1# specimen,(b) the electron diffraction pattern of the marked precipitate, (c) the composition mapping of the precipitate
Fig.19  TEM results of MC precipitate in 2# specimen (a) TEM bright filed image of the 2# specimen, (b) the electron diffraction pattern of the marked precipitate, (c) the composition mapping of the precipitat
SteelPrecipitatesDensity /m-3Average diameter / nm
1#M23C64.37×1019131
MX2.6×101958
2#M23C63.43×1019111
MX1.22×102054
Table 3  Number density and average particle size of precipitates in 1# and 2# specimens
1 Kohyama A, Hishinuma A, Kohno Y, et al. The development of ferritic steels for DEMO blanket [J]. Fusion Eng. Des., 1998, 41: 1
doi: 10.1016/S0920-3796(98)00115-X
2 Zhang Y M, Zeng L P, Shen X Y, et al. ITER project and fusion energy development strategy [J]. Nucl. Fus. Plasma Phys., 2013, 33: 359
张一鸣, 曾丽萍, 沈欣媛 等. ITER计划与聚变能发展战略 [J]. 核聚变与等离子体物理, 2013, 33: 359
3 Aubert P, Tavassoli F, Rieth M, et al. Review of candidate welding processes of RAFM steels for ITER test blanket modules and DEMO [J]. J. Nucl. Mater., 2011, 417: 43
doi: 10.1016/j.jnucmat.2010.12.248
4 Liu C X, Mao C L, Cui L, et al. Recent progress in microstructural control and solid-state welding of reduced activation ferritic/martensitic steels [J]. Acta Metall. Sin., 2021, 57: 1521
doi: 10.11900/0412.1961.2021.00348
刘晨曦, 毛春亮, 崔 雷 等. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展 [J]. 金属学报, 2021, 57: 1521
doi: 10.11900/0412.1961.2021.00348
5 Wu Y, Team The FDS. Design analysis of the China dual-functional lithium lead (DFLL) test blanket module in ITER [J]. Fusion Eng. Des., 2007, 82: 1893
doi: 10.1016/j.fusengdes.2007.08.012
6 Tanigawa H, Gaganidze E, Hirose T, et al. Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications [J]. Nucl. Fusion, 2017, 57: 092004
7 Mergia K, Boukos N. Structural, thermal, electrical and magnetic properties of Eurofer 97 steel [J]. J. Nucl. Mater., 2008, 373(1-3): 1
doi: 10.1016/j.jnucmat.2007.03.267
8 Klueh R L, Alexander D J, Kenik E A. Development of low-chromium, chromium-tungsten steels for fusion [J]. J. Nucl. Mater., 1995, 227(1-2): 11
doi: 10.1016/0022-3115(95)00143-3
9 Tavassoli A A F, Rensman J W, Schirra M, et al. Materials design data for reduced activation martensitic steel type F82H [J]. Fusion Eng. Des., 2002, 61-62: 617
doi: 10.1016/S0920-3796(02)00255-7
10 Kohyama A, Kohno Y, Kuroda M, et al. Production of low activation steel; JLF-1, large heats—Current status and future plan [J]. J. Nucl. Mater., 1998, 258-263: 1319
doi: 10.1016/S0022-3115(98)00198-6
11 Laha K, Saroja S, Moitra A, et al. Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties [J]. J. Nucl. Mater., 2013, 439: 41
doi: 10.1016/j.jnucmat.2013.03.073
12 Huang Q Y, Li C J, Wu Q S, et al. Progress in development of CLAM steel and fabrication of small TBM in China [J]. J. Nucl. Mater., 2011, 417(1-3): 85
doi: 10.1016/j.jnucmat.2010.12.170
13 Wang P H, Chen J M, Fu H Y, et al. Technical issues for the fabrication of a CN-HCCB-TBM based on RAFM steel CLF-1 [J]. Plasma Sci. Technol., 2013, 15(2): 133
doi: 10.1088/1009-0630/15/2/11
14 Chen J M, Wang P H, Fu H Y, et al. Research of low activation structural material for fusion reactor in SWIP [A]. Proceedings of the 24th IAEA Fusion Energy Conference [C]. San Diego, CA: IAEA, 2012
15 Zhuang G, Li G Q, Li J, et al. Progress of the CFETR design [J]. Nucl. Fusion, 2019, 59: 112010
doi: 10.1088/1741-4326/ab0e27
16 Xu Y P, Lv Y M, Zhou H S, et al. A review on the development of the structural materials of the fusion blanket [J]. Mater. Rev., 2018, 32(17): 2897
徐玉平, 吕一鸣, 周海山 等. 核聚变堆包层结构材料研究进展及展望 [J]. 材料导报, 2018, 32(17): 2897
17 Liu X Y, Chen Z Z, Zhou Y, et al. Thermodynamic calculation and analysis of equilibrium precipitation phases of G115 martensitic heat-resistant steel [J]. Heat Treat. Met., 2021, 46(11): 29
doi: 10.13251/j.issn.0254-6051.2021.11.005
刘心阳, 陈正宗, 周 芸 等. G115马氏体耐热钢平衡析出相的热力学计算和分析 [J]. 金属热处理, 2021, 46(11): 29
doi: 10.13251/j.issn.0254-6051.2021.11.005
18 Sundman B, Matthias S, Zhang L J, et al. Computational thermodynamics and its applications to materials science [J]. Mater. China, 2015, 34(1): 15
Sundman B, Matthias S, 张利军 等. 计算热力学及其在材料科学中的应用 [J]. 中国材料进展, 2015, 34(1): 15
19 Kuai C G, Peng Z F. Elemental partitioning characteristics and stability of equilibrium phases during 450~1200℃ in T/P91 steel [J]. Acta Metall. Sin., 2008, 44(8): 897
蒯春光, 彭志方. T/P91钢在450-1200℃区间各相元素的分配特征及相稳定性 [J]. 金属学报, 2008, 44(8): 897
20 Peng Z F, Ren Y Y. Determination of ideal partitioning-ratios and-parameters of substitutional elements and lattice cell number of two-phase alloys with FCC, BCC and HCP structures [J]. Acta Metall. Sin., 2001, 37(5): 472
彭志方, 任遥遥. FCC, BCC和HCP结构两相合金中置换型元素理想分配比和分配系数及晶胞比的确定 [J]. 金属学报, 2001, 37(5): 472
21 Fu H Y, Wang P H, Chen J M. Heat treatment process for CLF-1 reduced activation ferritic/martensitic steel [J]. Mater. Mech. Eng., 2010, 34(1): 28
付海英, 王平怀, 谌继明. CLF-1低活化铁素体/马氏体钢的热处理工艺 [J]. 机械工程材料, 2010, 34(1): 28
22 Tamura M, Kusuyama H, Shinozuka K, et al. Long-term stability of TaC particles during tempering of 8% Cr~2% W steel [J]. J. Nucl. Mater., 2007, 367-370: 137
doi: 10.1016/j.jnucmat.2007.03.154
23 Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants [J]. Sci. Technol. Adv. Mater., 2008, 9: 013002
24 Shi L, Yan Z S, Liu Y C, et al. Improved toughness and ductility in ferrite/acicular ferrite dual-phase steel through intercritical heat treatment [J]. Mat. Sci. Eng., 2014, 590A: 7
25 Ennis P J, Czyrska-Filemonowicz A. Recent advances in creep-resistant steels for power plant applications [J]. Sadhana, 2003, 28: 709
doi: 10.1007/BF02706455
26 Liu P P, Zhao M Z, Zhu Y M, et al. Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel [J]. J. Alloys Compd., 2013, 579: 599
doi: 10.1016/j.jallcom.2013.07.085
27 Vanaja J, Laha K, Nandagopal M, et al. Effect of tungsten on tensile properties and flow behaviour of RAFM steel [J]. J. Nucl. Mater., 2013, 433: 412
doi: 10.1016/j.jnucmat.2012.10.040
28 Abe F, Nakazawa S. The effect of tungsten on creep behavior of tempered martensitic 9Cr steels [J]. Metall. Mater. Trans., 1992, 23A(11) : 3025
29 Yan W, Hu P, Deng L F, et al. Effect of carbon reduction on the toughness of 9CrWVTaN steels [J]. Metall. Mater. Trans., 2012, 43A(6) : 1921
30 Wang H, Yan W, Van Zwaag S, et al. On the 650℃ thermostability of 9~12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
doi: 10.1016/j.actamat.2017.05.069
31 Tan L, Snead L L, Katoh Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors [J]. J. Nucl. Mater., 2016, 478: 42
doi: 10.1016/j.jnucmat.2016.05.037
[1] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[2] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[3] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[5] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[6] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[7] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[8] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[9] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[10] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
[11] Wu YAO,Mengxue WU,Yongqi WEI. Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System[J]. 材料研究学报, 2014, 28(3): 197-203.
[12] Ruwu WANG,Jing LIU,Zhanghua GAN,Chun ZENG,Fengquan ZHANG. Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)[J]. 材料研究学报, 2014, 28(3): 204-210.
[13] Lei LI,Ke QIN,Haitao ZHANG,Zhihao ZHAO,Qingfeng ZHU,Yubo ZUO,Jianzhong CUI. Crystallographic Features of a Solidified Hypoeutectic Zn-4.45%Al Alloy[J]. 材料研究学报, 2014, 28(2): 126-132.
[14] Yanen WANG,Qinghua WEI,Mingming YANG,Shengmin WEI. Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for HA/NBCA[J]. 材料研究学报, 2014, 28(2): 133-138.
[15] Guangping ZHANG,Menglin LI,Ximao WU,Chunhe LI,Xuemei LUO. Research Progress on Effect of Length Scale on Electrical Resistivity of Metals[J]. 材料研究学报, 2014, 28(2): 81-87.
No Suggested Reading articles found!