|
|
Simulation of Residual Stress Evolution of 8Cr4Mo4V Steel Induced by Laser Shock and Its Influence on Fatigue Performance |
SUN Yufeng1, LIU Weijun1, ZHANG Hongwei2, SU Yong3, WEI Yinghua4, LIU Guisheng1, YU Xingfu1( ) |
1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China 2.Northeast Air Traffic Administration Meteorological Center of Civil Aviation, Shenyang 110169, China 3.School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 4.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
|
Cite this article:
SUN Yufeng, LIU Weijun, ZHANG Hongwei, SU Yong, WEI Yinghua, LIU Guisheng, YU Xingfu. Simulation of Residual Stress Evolution of 8Cr4Mo4V Steel Induced by Laser Shock and Its Influence on Fatigue Performance. Chinese Journal of Materials Research, 2023, 37(12): 933-942.
|
Abstract The effect of laser shock peening (LSP) on the residual stress and fatigue properties of 8Cr4Mo4V steel was studied by numerical simulation and experimental verification in terms of the residual stress evolution, microstructure observation, hardness and rotating bending fatigue performance tests. The results show that LSP causes a large compressive residual stress on the surface of 8Cr4Mo4V steel, which was acquired to be -607 MPa and -584 MPa by finite element method and the experimental measurement. During the process of LSP, the plasma shock wave may shatter carbides on the surface of the steel into smaller pieces, while induce the secondary precipitation of subsurface carbides and the severe plastic deformation of the substrate near the surface, thus increasing the surface hardness of the 8Cr4Mo4V steel. The increase of residual stress and surface hardness and the precipitation of secondary carbides on the subsurface may effectively inhibit the initiation of fatigue cracks and slow down the crack propagation rate. Therefore, the crack source is transferred from the surface layer to the subsurface layer. The fatigue strength of 8Cr4Mo4V steel after LSP is increased by about 45.95% and the rotating bending fatigue performance is significantly improved.
|
Received: 28 August 2023
|
|
Fund: National Key Research and Development Program of China(2022YFB4602402);Educational Department Program of Liaoning Province(JYTMS20231194) |
Corresponding Authors:
YU Xingfu, Tel: 13604072060, E-mail: yuxingfu@163.com
|
1 |
He Z R, Shen Y Z, Tao J, et al. Laser shock peening regulating aluminum alloy surface residual stresses for enhancing the mechanical properties: roles of shock number and energy [J]. Surf. Coat. Technol., 2021, 421: 127481
doi: 10.1016/j.surfcoat.2021.127481
|
2 |
Lu J Z, Lu H F, Xu X, et al. High-performance integrated additive manufacturing with laser shock peening-induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components [J]. Int. J. Mach. Tools Manuf., 2020, 148: 103475
doi: 10.1016/j.ijmachtools.2019.103475
|
3 |
Jiao Y, He W F, Shen X J. Enhanced high cycle fatigue resistance of Ti-17 titanium alloy after multiple laser peening without coating [J]. Int. J. Adv. Manuf. Technol., 2019, 104: 1333
doi: 10.1007/s00170-019-03993-8
|
4 |
Nie X F, Wei C, Hou Z W, et al. Improving fatigue performance of titanium alloy simulated-blade subjected to foreign object damage by laser shock peening [J]. J. Aerosp. Power, 2021, 36(1): 137
|
|
聂祥樊, 魏 晨, 侯志伟 等. 激光冲击强化提高外物打伤钛合金模拟叶片高周疲劳性能 [J]. 航空动力学报, 2021, 36(1): 137
|
5 |
Xiao Z X, Mao J X, Tian T Y, et al. Numerical simulation and experimental verification on laser shock peening for turbine mortise [J]. J. Aerosp. Power, 2022, 37(11): 2448
|
|
肖值兴, 毛建兴, 田腾跃 等. 涡轮盘榫槽激光冲击强化数值模拟与试验验证 [J]. 航空动力学报, 2022, 37(11): 2448
|
6 |
Gou L, Ma Y E, Du Y. Continuous dynamic numerical analysis of residual stress field under multi-point laser shock peening [J]. J. Aerosp. Power, 2019, 34(12): 2738
|
|
苟 磊, 马玉娥, 杜 永. 多点连续动态激光冲击强化残余应力场数值分析 [J]. 航空动力学报, 2019, 34(12): 2738
|
7 |
Hu Y X, Yao Z Q, Hu J. Numerical simulation of residual stress field for laser shock processing [J]. Chin. J. Lasers, 2006, 33(6): 846
|
|
胡永祥, 姚振强, 胡 俊. 激光冲击强化残余应力场的数值仿真分析 [J]. 中国激光, 2006, 33(6): 846
|
8 |
Xu G, Luo K Y, Dai F Z, et al. Effects of scanning path and overlapping rate on residual stress of 316L stainless steel blade subjected to massive laser shock peening treatment with square spots [J]. Appl. Surf. Sci., 2019, 481: 1053
doi: 10.1016/j.apsusc.2019.03.093
|
9 |
Xu G, Lu H F, Luo K Y, et al. Effects of surface curvature on residual stress field of 316L stainless steel subjected to laser shock peening [J]. Opt. Laser Technol., 2021, 144: 107420
doi: 10.1016/j.optlastec.2021.107420
|
10 |
Ge L C, Cao Y P, Hua G R, et al. The effect of surface curvature on surface residual stress field distribution of laser shock materials [J]. Surf. Technol., 2020, 49(4): 284
|
|
葛良辰, 曹宇鹏, 花国然 等. 表面曲率对激光冲击曲面材料表面残余应力场分布的影响 [J]. 表面技术, 2020, 49(4): 284
|
11 |
Wu Z H, Zhou L C, Zhang B, et al. Effect of selective laser shock peening on vibration response of 2024 aluminum alloy blade [J]. Surf. Technol., 2022, 51(1): 348
|
|
吴郑浩, 周留成, 张 波 等. 激光冲击选区强化对2024铝合金叶片振动响应特性的影响 [J]. 表面技术, 2022, 51(1): 348
|
12 |
Tang K, Zhou L C, He W F, et al. Experimental study on influences of laser shock processing on fatigue performance of LZ50 axle steels [J]. China Mech. Eng., 2020, 31(3): 267
|
|
唐 凯, 周留成, 何卫峰 等. 激光冲击强化对LZ50车轴钢疲劳性能影响试验研究 [J]. 中国机械工程, 2020, 31(3): 267
|
13 |
Chen C, Zhang X Y, Yan X J, et al. Effect of laser shock peening on combined low- and high-cycle fatigue life of casting and forging turbine blades [J]. J. Iron Steel Res. Int., 2018, 25: 108
doi: 10.1007/s42243-017-0013-z
|
14 |
Liu G L, Cao Y H, Yang K, et al. Thermal fatigue crack growth behavior of ZCuAl10Fe3Mn2 alloy strengthened by laser shock processing [J]. Trans. Nonferr. Metals Soc. China, 2021, 31(21): 1023
doi: 10.1016/S1003-6326(21)65558-9
|
15 |
Zheng X W, Liang Y C, He X T, et al. The effect of laser shock peening on the microstructure and high-temperature mechanical properties of AZ31 alloy [J]. J. Mater. Eng. Perform., 2021, 30(6): 4282
doi: 10.1007/s11665-021-05723-2
|
16 |
Chen H, Feng A X, Li J, et al. Effects of multiple laser peening impacts on mechanical properties and microstructure evolution of 40CrNiMo steel [J]. J. Mater. Eng. Perform., 2019, 28(5): 2522
doi: 10.1007/s11665-019-04034-x
|
17 |
Ganesh P, Rai A K, Dwivedi P K, et al. Study on enhancing fatigue life of SAE 9260 spring steel with surface defect through laser shock peening [J]. J. Mater. Eng. Perform., 2019, 28(4): 2029
doi: 10.1007/s11665-019-03990-8
|
18 |
Wu J F, Che Z G, Zou S K, et al. Surface integrity of TA19 notched simulated blades with laser shock peening and its effect on fatigue strength [J]. J. Mater. Eng. Perform., 2020, 29(8): 5184
doi: 10.1007/s11665-020-05025-z
|
19 |
Yan K, Wei P B, Ren F Z, et al. Enhance fatigue resistance of nanocrystalline NiTi by laser shock peening [J]. Shap. Mem. Superelast., 2019, 5: 436
doi: 10.1007/s40830-019-00256-z
|
20 |
Chupakhin S, Klusemann B, Huber N, et al. Application of design of experiments for laser shock peening process optimization [J]. Int. J. Adv. Manuf. Technol., 2019, 102: 1567
doi: 10.1007/s00170-018-3034-2
|
21 |
Su Y, Yang S, Yu X F, et al. Effect of Austempering temperature on microstructure and mechanical properties of M50 bearing steel [J]. J. Mater. Res. Technol., 2022, 20: 4576
doi: 10.1016/j.jmrt.2022.09.002
|
22 |
Yu X F, Wang S J, Zheng D Y, et al. Effect of graded solution treatments on microstructure and hardness of 8Cr4Mo4V steel [J]. Chin. J. Mater. Res., 2022, 36(4): 287
doi: 10.11901/1005.3093.2021.702
|
|
于兴福, 王士杰, 郑冬月 等. 分级固溶处理对8Cr4Mo4V钢的微观组织和硬度的影响 [J]. 材料研究学报, 2022, 36(4): 287
doi: 10.11901/1005.3093.2021.702
|
23 |
Yu X F, Wang S Y, Wang Y P, et al. Effect of vacuum graded quenching on microstructure and mechanical properties of 8Cr4Mo4V steel [J]. Chin. J. Mater. Res., 2022, 36(6): 443
doi: 10.11901/1005.3093.2022.062
|
|
于兴福, 王盛宇, 王宇蓬 等. 真空分级淬火对8Cr4Mo4V钢组织和性能的影响 [J]. 材料研究学报, 2022, 36(6): 443
doi: 10.11901/1005.3093.2022.062
|
24 |
Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry [J]. J. Appl. Phys., 1990, 68(2): 775
doi: 10.1063/1.346783
|
25 |
Zhang X Q, Zheng R, Qi X L, et al. Investigation on finite element meshes in numerical analysis of gear laser shock processing [J]. Mech. Sci. Technol. Aerosp. Eng., 2013, 32(12): 1829
|
|
张兴权, 郑 如, 戚晓利 等. 齿轮激光冲击强化数值模拟中有限元网格划分的研究 [J]. 机械科学与技术, 2013, 32(12): 1829
|
26 |
Amarchinta H K, Grandhi R V, Clauer A H, et al. Simulation of residual stress induced by a laser peening process through inverse optimization of material models [J]. J. Mater. Process. Technol., 2010, 210: 1997
doi: 10.1016/j.jmatprotec.2010.07.015
|
27 |
Wang C Y, Luo K Y, Wang J, et al. Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420 stainless steel during laser shock peening [J]. Int. J. Plasticity, 2022, 150: 103191
doi: 10.1016/j.ijplas.2021.103191
|
28 |
Cui T, He T T, Du S M, et al. Effect of laser shock processing on microstructure and tribological behavior of GCr15 bearing steel [J]. Surf. Technol., 2022, 51(7): 353
|
|
崔 通, 贺甜甜, 杜三明 等. 激光冲击强化对GCr15轴承钢微观组织和摩擦学行为的影响 [J]. 表面技术, 2022, 51(7): 353
|
29 |
Jiao Q Y, Han P P, Lu Y, et al. Effect of laser shock peening on residual stress and mechanical properties of TA15 titanium alloy [J]. J. Plasticity Eng., 2021, 28(3): 146
|
|
焦清洋, 韩培培, 陆 莹 等. 激光冲击强化对TA15钛合金残余应力和力学性能的影响 [J]. 塑性工程学报, 2021, 28(3): 146
doi: 10.3969/j.issn.1007-2012.2021.03.019
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|