Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (12): 943-951    DOI: 10.11901/1005.3093.2023.126
ARTICLES Current Issue | Archive | Adv Search |
Atomic Analysis of Contact-induced Subsurface Damage Behavior of Single Crystal SiC Based on Molecular Simulation
WANG Sheng1, ZHOU Qiaoting2, ZHAN Huimin3, CHEN Jingjing4()
1.Department of Mechanical Engineering, Quzhou College of Technology, Quzhou 324000, China
2.School of Humanities Education, Nanchang Institute of Technology, Nanchang 330044, China
3.School of Computer and Information Engineering, Nanchang Institute of Technology, Nanchang 330044, China
4.School of Mechanical and Electrical Engineering, Nanchang Institute of Technology, Nanchang 330044, China
Cite this article: 

WANG Sheng, ZHOU Qiaoting, ZHAN Huimin, CHEN Jingjing. Atomic Analysis of Contact-induced Subsurface Damage Behavior of Single Crystal SiC Based on Molecular Simulation. Chinese Journal of Materials Research, 2023, 37(12): 943-951.

Download:  HTML  PDF(12615KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is helpful to understand the microstructure evolution characteristics and mechanical properties of monocrystalline SiC semiconductor devices during contact from the perspective of atomic scale to understand the microscopic mechanism of subsurface damage behavior and phase transformation. Based on the Vashishta potential function of molecular dynamics, the microscopic evolution characteristics of the nano-indentation induced dislocation rings, the amount of phase transformation and the contact mechanical properties of the corresponding monocrystalline SiC surface were studied, and the effect of extreme service temperature on the subsurface damage behavior and the contact mechanical properties were analyzed. The results show that the plastic deformation of SiC subsurface damage is mainly caused by dislocation nucleation, dislocation accumulation and dislocation slip, whilst the dislocation ring goes through four evolution stages during contact, i.e., dislocation nucleation, dislocation ring growth, dislocation ring reproduction and dislocation ring brittle break. Besides, with the increasing temperature, the maximum bearing capacity, hardness, Young's modulus and contact stiffness curves of silicon carbide materials show a parabolic trend of decline. The main reason is that the higher the temperature is, the SiC lattice is easy to get rid of the bondage of atomic bond energy, resulting in lattice defects, and easy to breed dislocation, which result in the enrichment of stress concentration on subsurface of materials at lastly. As a result, the mechanical properties of SiC materials are greatly reduced while being contacted. In addition, the subsurface stress concentration is also the fundamental reason for the phase transformation from cubic to sphalerite for SiC materials. With the increase of temperature, the amount of phase transformation increases. The dynamic contact plastic deformation and micro-structure evolution of SiC in semiconductor devices under loading, and the phase transformation are significantly dependent on the operating temperature. The rising temperature related change of crystal lattice and the generation of random rough spots on the surface are the main causes of contact adhesion. This study may provide a deeper understand on contact mechanical properties and sub-surface damage behavior at extreme service temperatures, and will also enrich the understanding of the contact failure mechanism of nano silicon carbide.

Key words:  inorganic non-metallic materials      subsurface damage      single crystal SiC      contact mechanical performance      dislocation ring     
Received:  13 February 2023     
ZTFLH:  TH117.1  
Fund: Public Welfare Technology Research Project of Zhejiang Province(LGC21E050002);University-level Research Center of Friction and Wear and Protective Lubrication of Mechanical Table Interface of Nanchang Institute of Technology, Science and Technology, Research Project of Education Department of Jiangxi Province(GJJ2202705);School Project of Nanchang Institute of Technology(NLZK-22-07);School Project of Nanchang Institute of Technology(NLZK-22-01)
Corresponding Authors:  CHEN Jingjing, Tel: 15750843783, E-mail: chenjingjingfzu@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.126     OR     https://www.cjmr.org/EN/Y2023/V37/I12/943

Fig.1  Atomic scale physical model and MD simulation of single crystal silicon carbide during nanoindentation contact
Fig.2  Relation of load and displacement curve in contact of single crystal silicon carbide at low temperature (5 K)
Fig.3  Microstructure evolution of single crystal SiC during nanoindentation contact at low temperature (5 K)
Fig.4  Evolution of brittle fracture of single crystal silicon carbide screw dislocation at low temperature (5 K) and influence of temperature on load and displacement curves of silicon carbide
Fig.5  Effect of extreme active temperature on surface morphology of single crystal silicon carbide during nanoindentation contact
Fig.6  Variation of mechanical properties of single crystal silicon carbide with service temperature during nanoindentation contact
Fig.7  The change of damage structure type of single crystal silicon carbide substrate with temperature
LoadingTemperature / K
Variable529880013005298800130052988001300
Depth / nmOther structureCD1st+CD2nd structureHD+HD1st+HD2nd structure
0000000000000
2528885107212031808918367188341979500192464
2.42080162714241336191401959820189210940576111823
34096299627932526218562132122381232497044811183454
492236289499044602526326353273562874215551026746165
4.4117927854553957352688628221291243035417663735507928
Table 1  The transformation number of phase change structure types in the subsurface damage of single crystal silicon carbide varies with the service temperature
Fig.8  The change of load-induced von Mises stress of single crystal silicon carbide during nanoindentation with the operating temperature
1 Woodilla D, Buonomo M, Bar-On I, et al. Elevated-temperature behavior of high-strength silicon carbide [J]. J. Am. Ceram. Soc., 1993, 76: 249
doi: 10.1111/jace.1993.76.issue-1
2 Talwar D N, Sherbondy J C. Thermal expansion coeffificient of 3C-SiC [J]. Appl. Phys. Lett., 1995, 67: 3301
doi: 10.1063/1.115227
3 Demenet J L, Amer M, Tromas C. Dislocations in 4H-and 3C-SiC single crystals in the brittle regime [J]. Phys. Status.Solidi-C, 2013, 10: 64
4 Miranda A, Cuevas J L, Ramos A E, et al. Quantum confinement effects on electronic properties of hydrogenated 3C-SiC nanowires [J]. Microelectronics, 2009, 40: 796
doi: 10.1016/j.mejo.2008.11.034
5 Wang G B, Lei Y Z. Concerning and developing tribology, promoting sustainable economic development [J]. Prog. Nat. Sci., 2005, 15: 571
6 Department of Engineering and Materials Science, National Natural Science Foundation of China. Mechanical Engineering Development Strategy Report (2011-2020) [R] Beijing: Science Press, 2010
国家自然科学基金委员会工程与材料科学部. 机械工程学科发展战略报告(2011-2020) [R]. 北京: 科学出版社, 2010
7 Mylvaganam K, Zhang L C, Eyben P, et al. Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification [J]. Nanotechnology, 2009, 20: 305705
doi: 10.1088/0957-4484/20/30/305705
8 Du X C. Molecular dynamics investigations of temperature effects on the nano-indentation/scratching response of typical single crystal materials [D]. Changchun: Jilin University, 2016
杜宪成. 温度对典型单晶材料纳米压痕/划痕响应影响的分子动力学解析 [D]. 长春: 吉林大学, 2016
9 Zhang Q, Chen J J, Song M M, et al. Original analysis of adhesion produced for semiconductor silicon device based on atomic simulation [J]. Sur. Tech., 2021, 50: 269
10 Shi Y J, Chen X B, Wu X J, et al. Deformation mechanism of nanoscale polycrystalline α-silicon carbide based on molecular dynamics simulation [J]. Chin. J. Mater. Res., 2020, 34: 628
施渊吉, 陈显冰, 吴修娟 等. 基于分子动力学模拟的纳米多晶α-碳化硅变形机制 [J]. 材料研究学报, 2020, 34(8): 628
doi: 10.11901/1005.3093.2019.600
11 Zhao K, Aghababaei R. Interfacial plasticity controls material removal rate during adhesive sliding contact [J]. Phy. Rev. Mat., 2020, 4: 103605
12 Juan C C, Tsai M H, Tsai C W, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Mat. Lett., 2016, 184: 200
doi: 10.1016/j.matlet.2016.08.060
13 Subin L, Aviral V, Jiseong I, et al. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops [J]. Nat. Com., 2020, 11: 2367
14 Wang J S, Zhang X D, Fang F Z, et al. A numerical study on the material removal and phase transformation in the nanometric cutting of silicon [J]. App. Sur. Sci., 2018, 455: 608
doi: 10.1016/j.apsusc.2018.05.091
15 Zhao L, Zhang J J, Janine P, et al. Depth-sensing ductile and brittle deformation in 3C-SiC under Berkovich nanoindentation[J], Mater. Des., 2021, 197: 109223
doi: 10.1016/j.matdes.2020.109223
16 Kondo S, Koyanagi, Hinoki T. Irradiation creep of 3C-SiC and microstructural understanding of the underlying mechanisms [J]. J Nucl. Mate., 2014, 448: 487
17 Zhao S, Flanagan R, Hahn E N, et al. Shock-induced amorphization in silicon carbide [J]. Acta Mater., 2018, 158: 206
doi: 10.1016/j.actamat.2018.07.047
18 Branicio P S, Kalia R K, Nakano A, et al. Nanoductility induced brittle fracture in s high performance ceramics [J]. Appl. Phy. Lett., 2010, 97:111903
doi: 10.1063/1.3478003
19 Chavoshi S Z, Luo X. Molecular dynamics simulation study of deformation mechanisms in 3C-SiC during nanometric cutting at elevated temperatures [J]. Mater. Sci. Eng. A, 2016, 654: 400
doi: 10.1016/j.msea.2015.11.100
20 Xiang H G, Li H T, Fu T. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Mater., 2017, 138: 131
doi: 10.1016/j.actamat.2017.06.045
21 Chen J J, HU H J, Lai L F. Effect of adhesive contact failures on single crystal copper with different diamond radius [J]. Sur.Tech., 2018, 47(8): 170
陈晶晶, 胡洪钧, 赖联锋. 金刚石探针曲率半径对单晶铜表面粘附接触失效影响分析 [J]. 表面技术, 2018, 47(8): 170
22 Chen J J, Hu H J, Li B Z. Molecular dynamics simulation of failure in adhesive contact with single crystal copper [J]. Sur. Tech., 2017, 46(8): 195
陈晶晶, 胡洪钧, 李保震. 纳观单晶铜表面粘着接触失效的分子动力学模拟 [J]. 表面技术, 2017, 46(8): 195
23 Cui Y H, Li H T, Xiang H G, et al. Plastic deformation in zinc-blende AlN under nanoindentation: A molecular dynamics simulation [J]. Appl. Sur. Sci., 2019, 466: 757
doi: 10.1016/j.apsusc.2018.10.009
24 Stukowski. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool [J]. Modeling and Simulation in Mater. Sci. Eng., 2009, 18: 015012
25 Xiang H, Guo W. Synergistic effects of twin boundary and phase boundary for enhancing ultimate strength and ductility of lamellar TiAl single crystals [J]. Int J. Plasticity, 2020, 150: 103197
doi: 10.1016/j.ijplas.2021.103197
26 Xiang H G, Guo W L. A newly developed interatomic potential of Nb-Al-Ti ternary systems for high-temperature applications [J]. Acta Mech. Sin., 2022, 38: 121451
doi: 10.1007/s10409-022-09007-x
27 Goel S, Beake B, Chan C, et al. Twinning anisotropy of tantalum during nanoindentation [J]. Mater. Sci. Eng. A, 2015, 627:249
doi: 10.1016/j.msea.2014.12.075
28 Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater. Res., 1992, 7: 1564
doi: 10.1557/JMR.1992.1564
29 Fan X, Rui Z, Cao H, et al. Nanoindentation of γ-TiAl with different Crystal planes by molecular dynamics simulations [J]. Materials, 2019, 12: 770
doi: 10.3390/ma12050770
30 Belak J, Boercker D B, Stowers I F. Simulation of nanometer-scale deformation of metallic and ceramic surfaces [J]. MRS Bull., 1993, 18: 55
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] WANG Yue, FU Boyan, CHEN Shuanglong, ZOU Binglin, WANG Chunjie. Thermophysical Properties of Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) Nanomaterials for Thermal Barrier Coatings[J]. 材料研究学报, 2023, 37(11): 855-861.
[9] SUN Yuwei, CHEN Chou, QI Xin, REN Chuqi, TANG Qian, TENG Honghui, REN Baixiang. Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) Heterojunction and Its Performance in Photocatalytic Reduction of Cr(VI)[J]. 材料研究学报, 2023, 37(11): 871-880.
[10] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
No Suggested Reading articles found!