Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (12): 933-942    DOI: 10.11901/1005.3093.2023.427
ARTICLES Current Issue | Archive | Adv Search |
Simulation of Residual Stress Evolution of 8Cr4Mo4V Steel Induced by Laser Shock and Its Influence on Fatigue Performance
SUN Yufeng1, LIU Weijun1, ZHANG Hongwei2, SU Yong3, WEI Yinghua4, LIU Guisheng1, YU Xingfu1()
1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Northeast Air Traffic Administration Meteorological Center of Civil Aviation, Shenyang 110169, China
3.School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
4.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

SUN Yufeng, LIU Weijun, ZHANG Hongwei, SU Yong, WEI Yinghua, LIU Guisheng, YU Xingfu. Simulation of Residual Stress Evolution of 8Cr4Mo4V Steel Induced by Laser Shock and Its Influence on Fatigue Performance. Chinese Journal of Materials Research, 2023, 37(12): 933-942.

Download:  HTML  PDF(15724KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of laser shock peening (LSP) on the residual stress and fatigue properties of 8Cr4Mo4V steel was studied by numerical simulation and experimental verification in terms of the residual stress evolution, microstructure observation, hardness and rotating bending fatigue performance tests. The results show that LSP causes a large compressive residual stress on the surface of 8Cr4Mo4V steel, which was acquired to be -607 MPa and -584 MPa by finite element method and the experimental measurement. During the process of LSP, the plasma shock wave may shatter carbides on the surface of the steel into smaller pieces, while induce the secondary precipitation of subsurface carbides and the severe plastic deformation of the substrate near the surface, thus increasing the surface hardness of the 8Cr4Mo4V steel. The increase of residual stress and surface hardness and the precipitation of secondary carbides on the subsurface may effectively inhibit the initiation of fatigue cracks and slow down the crack propagation rate. Therefore, the crack source is transferred from the surface layer to the subsurface layer. The fatigue strength of 8Cr4Mo4V steel after LSP is increased by about 45.95% and the rotating bending fatigue performance is significantly improved.

Key words:  metallic materials      8Cr4Mo4V steel      laser shock peening      numerical simulation      residual stress      fatigue properties     
Received:  28 August 2023     
ZTFLH:  TN249  
Fund: National Key Research and Development Program of China(2022YFB4602402);Educational Department Program of Liaoning Province(JYTMS20231194)
Corresponding Authors:  YU Xingfu, Tel: 13604072060, E-mail: yuxingfu@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.427     OR     https://www.cjmr.org/EN/Y2023/V37/I12/933

ElementCCrMoVSiMnFe
Content0.804.024.050.930.160.29Bal.
Table 1  Chemical composition of 8Cr4Mo4V steel (mass fraction, %)
ParametersElastic modulus, E / GPaPoisson ratio, υDensity, ρ / g·cm-3
Value2060.307.85
Table 2  Mechanical property parameters of 8Cr4Mo4V steel
Fig.1  Schematic diagram of the heat treatment and subsequent LSP treatment (a) heat treatment; (b) hardness test and LSP treatment; (c) rotating bending fatigue test sample (unit: mm)
Fig.2  Schematic diagram of plasma expansion
Fig.3  Schematic diagram of the formation process of residual stress field (a) loading process; (b) unloading process
Fig.4  Finite element model and shock wave loading (a) mesh division of the finite element model; (b) relationship between shock wave pressure and time; (c) schematic diagram of the spatial distribution of shock wave pressure
Fig.5  LSP residual stress distribution calculated by finite element method (a) and (c) surface residual stress distribution; (b) and (d) cross sectional residual stress distribution
Fig.6  Hardness and residual stress of 8Cr4Mo4V steel before and after LSP (a) hardness gradient before and after LSP; (b) simulation and experimental results of residual stress
Fig.7  SEM images of microstructure of 8Cr4Mo4V steel before (a) and after LSP (b~d) and carbide statistics (e)
Fig.8  TEM images of 8Cr4Mo4V steel before (a) and after (b) LSP
Fig.9  Rotating bending fatigue strength of 8Cr4Mo4V steel before LSP and after LSP with different thicknesses of damaged layers removed
Fig.10  Rotating bending fatigue fracture morphology of 8Cr4Mo4V steel before LSP and after LSP with different thicknesses of damaged layers removed (a1~a3) without LSP; (b1~b3) surface removal of 25 μm after LSP; (c1~c3) surface removal of 50 μm after LSP; (d1~d3) surface removal of 75 μm after LSP; (a1~d1) macroscopic fracture morphology; (a2~d2) crack initiation zone; (a3~d3) crack propagation zone
Fig.11  Schematic diagram of LSP leading to carbide fragmentation and promoting secondary precipitation process of 8Cr4Mo4V steel in different states (a) no LSP; (b) formation of dislocation slip bands; (c) carbide fragmentation after LSP; (d) carbide precipitation on sub-surface after LSP
Fig.12  Schematic diagram of crack initiation and propagation in 8Cr4Mo4V steel before and after LSP during rotating bending fatigue process (a) no LSP; (b) after LSP
1 He Z R, Shen Y Z, Tao J, et al. Laser shock peening regulating aluminum alloy surface residual stresses for enhancing the mechanical properties: roles of shock number and energy [J]. Surf. Coat. Technol., 2021, 421: 127481
doi: 10.1016/j.surfcoat.2021.127481
2 Lu J Z, Lu H F, Xu X, et al. High-performance integrated additive manufacturing with laser shock peening-induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components [J]. Int. J. Mach. Tools Manuf., 2020, 148: 103475
doi: 10.1016/j.ijmachtools.2019.103475
3 Jiao Y, He W F, Shen X J. Enhanced high cycle fatigue resistance of Ti-17 titanium alloy after multiple laser peening without coating [J]. Int. J. Adv. Manuf. Technol., 2019, 104: 1333
doi: 10.1007/s00170-019-03993-8
4 Nie X F, Wei C, Hou Z W, et al. Improving fatigue performance of titanium alloy simulated-blade subjected to foreign object damage by laser shock peening [J]. J. Aerosp. Power, 2021, 36(1): 137
聂祥樊, 魏 晨, 侯志伟 等. 激光冲击强化提高外物打伤钛合金模拟叶片高周疲劳性能 [J]. 航空动力学报, 2021, 36(1): 137
5 Xiao Z X, Mao J X, Tian T Y, et al. Numerical simulation and experimental verification on laser shock peening for turbine mortise [J]. J. Aerosp. Power, 2022, 37(11): 2448
肖值兴, 毛建兴, 田腾跃 等. 涡轮盘榫槽激光冲击强化数值模拟与试验验证 [J]. 航空动力学报, 2022, 37(11): 2448
6 Gou L, Ma Y E, Du Y. Continuous dynamic numerical analysis of residual stress field under multi-point laser shock peening [J]. J. Aerosp. Power, 2019, 34(12): 2738
苟 磊, 马玉娥, 杜 永. 多点连续动态激光冲击强化残余应力场数值分析 [J]. 航空动力学报, 2019, 34(12): 2738
7 Hu Y X, Yao Z Q, Hu J. Numerical simulation of residual stress field for laser shock processing [J]. Chin. J. Lasers, 2006, 33(6): 846
胡永祥, 姚振强, 胡 俊. 激光冲击强化残余应力场的数值仿真分析 [J]. 中国激光, 2006, 33(6): 846
8 Xu G, Luo K Y, Dai F Z, et al. Effects of scanning path and overlapping rate on residual stress of 316L stainless steel blade subjected to massive laser shock peening treatment with square spots [J]. Appl. Surf. Sci., 2019, 481: 1053
doi: 10.1016/j.apsusc.2019.03.093
9 Xu G, Lu H F, Luo K Y, et al. Effects of surface curvature on residual stress field of 316L stainless steel subjected to laser shock peening [J]. Opt. Laser Technol., 2021, 144: 107420
doi: 10.1016/j.optlastec.2021.107420
10 Ge L C, Cao Y P, Hua G R, et al. The effect of surface curvature on surface residual stress field distribution of laser shock materials [J]. Surf. Technol., 2020, 49(4): 284
葛良辰, 曹宇鹏, 花国然 等. 表面曲率对激光冲击曲面材料表面残余应力场分布的影响 [J]. 表面技术, 2020, 49(4): 284
11 Wu Z H, Zhou L C, Zhang B, et al. Effect of selective laser shock peening on vibration response of 2024 aluminum alloy blade [J]. Surf. Technol., 2022, 51(1): 348
吴郑浩, 周留成, 张 波 等. 激光冲击选区强化对2024铝合金叶片振动响应特性的影响 [J]. 表面技术, 2022, 51(1): 348
12 Tang K, Zhou L C, He W F, et al. Experimental study on influences of laser shock processing on fatigue performance of LZ50 axle steels [J]. China Mech. Eng., 2020, 31(3): 267
唐 凯, 周留成, 何卫峰 等. 激光冲击强化对LZ50车轴钢疲劳性能影响试验研究 [J]. 中国机械工程, 2020, 31(3): 267
13 Chen C, Zhang X Y, Yan X J, et al. Effect of laser shock peening on combined low- and high-cycle fatigue life of casting and forging turbine blades [J]. J. Iron Steel Res. Int., 2018, 25: 108
doi: 10.1007/s42243-017-0013-z
14 Liu G L, Cao Y H, Yang K, et al. Thermal fatigue crack growth behavior of ZCuAl10Fe3Mn2 alloy strengthened by laser shock processing [J]. Trans. Nonferr. Metals Soc. China, 2021, 31(21): 1023
doi: 10.1016/S1003-6326(21)65558-9
15 Zheng X W, Liang Y C, He X T, et al. The effect of laser shock peening on the microstructure and high-temperature mechanical properties of AZ31 alloy [J]. J. Mater. Eng. Perform., 2021, 30(6): 4282
doi: 10.1007/s11665-021-05723-2
16 Chen H, Feng A X, Li J, et al. Effects of multiple laser peening impacts on mechanical properties and microstructure evolution of 40CrNiMo steel [J]. J. Mater. Eng. Perform., 2019, 28(5): 2522
doi: 10.1007/s11665-019-04034-x
17 Ganesh P, Rai A K, Dwivedi P K, et al. Study on enhancing fatigue life of SAE 9260 spring steel with surface defect through laser shock peening [J]. J. Mater. Eng. Perform., 2019, 28(4): 2029
doi: 10.1007/s11665-019-03990-8
18 Wu J F, Che Z G, Zou S K, et al. Surface integrity of TA19 notched simulated blades with laser shock peening and its effect on fatigue strength [J]. J. Mater. Eng. Perform., 2020, 29(8): 5184
doi: 10.1007/s11665-020-05025-z
19 Yan K, Wei P B, Ren F Z, et al. Enhance fatigue resistance of nanocrystalline NiTi by laser shock peening [J]. Shap. Mem. Superelast., 2019, 5: 436
doi: 10.1007/s40830-019-00256-z
20 Chupakhin S, Klusemann B, Huber N, et al. Application of design of experiments for laser shock peening process optimization [J]. Int. J. Adv. Manuf. Technol., 2019, 102: 1567
doi: 10.1007/s00170-018-3034-2
21 Su Y, Yang S, Yu X F, et al. Effect of Austempering temperature on microstructure and mechanical properties of M50 bearing steel [J]. J. Mater. Res. Technol., 2022, 20: 4576
doi: 10.1016/j.jmrt.2022.09.002
22 Yu X F, Wang S J, Zheng D Y, et al. Effect of graded solution treatments on microstructure and hardness of 8Cr4Mo4V steel [J]. Chin. J. Mater. Res., 2022, 36(4): 287
doi: 10.11901/1005.3093.2021.702
于兴福, 王士杰, 郑冬月 等. 分级固溶处理对8Cr4Mo4V钢的微观组织和硬度的影响 [J]. 材料研究学报, 2022, 36(4): 287
doi: 10.11901/1005.3093.2021.702
23 Yu X F, Wang S Y, Wang Y P, et al. Effect of vacuum graded quenching on microstructure and mechanical properties of 8Cr4Mo4V steel [J]. Chin. J. Mater. Res., 2022, 36(6): 443
doi: 10.11901/1005.3093.2022.062
于兴福, 王盛宇, 王宇蓬 等. 真空分级淬火对8Cr4Mo4V钢组织和性能的影响 [J]. 材料研究学报, 2022, 36(6): 443
doi: 10.11901/1005.3093.2022.062
24 Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry [J]. J. Appl. Phys., 1990, 68(2): 775
doi: 10.1063/1.346783
25 Zhang X Q, Zheng R, Qi X L, et al. Investigation on finite element meshes in numerical analysis of gear laser shock processing [J]. Mech. Sci. Technol. Aerosp. Eng., 2013, 32(12): 1829
张兴权, 郑 如, 戚晓利 等. 齿轮激光冲击强化数值模拟中有限元网格划分的研究 [J]. 机械科学与技术, 2013, 32(12): 1829
26 Amarchinta H K, Grandhi R V, Clauer A H, et al. Simulation of residual stress induced by a laser peening process through inverse optimization of material models [J]. J. Mater. Process. Technol., 2010, 210: 1997
doi: 10.1016/j.jmatprotec.2010.07.015
27 Wang C Y, Luo K Y, Wang J, et al. Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420 stainless steel during laser shock peening [J]. Int. J. Plasticity, 2022, 150: 103191
doi: 10.1016/j.ijplas.2021.103191
28 Cui T, He T T, Du S M, et al. Effect of laser shock processing on microstructure and tribological behavior of GCr15 bearing steel [J]. Surf. Technol., 2022, 51(7): 353
崔 通, 贺甜甜, 杜三明 等. 激光冲击强化对GCr15轴承钢微观组织和摩擦学行为的影响 [J]. 表面技术, 2022, 51(7): 353
29 Jiao Q Y, Han P P, Lu Y, et al. Effect of laser shock peening on residual stress and mechanical properties of TA15 titanium alloy [J]. J. Plasticity Eng., 2021, 28(3): 146
焦清洋, 韩培培, 陆 莹 等. 激光冲击强化对TA15钛合金残余应力和力学性能的影响 [J]. 塑性工程学报, 2021, 28(3): 146
doi: 10.3969/j.issn.1007-2012.2021.03.019
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!