|
|
Thermophysical Properties of Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) Nanomaterials for Thermal Barrier Coatings |
WANG Yue1, FU Boyan1, CHEN Shuanglong1, ZOU Binglin2, WANG Chunjie1( ) |
1.College of Physical Science and Technology, Bohai University, Jinzhou 121013, China 2.State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China |
|
Cite this article:
WANG Yue, FU Boyan, CHEN Shuanglong, ZOU Binglin, WANG Chunjie. Thermophysical Properties of Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) Nanomaterials for Thermal Barrier Coatings. Chinese Journal of Materials Research, 2023, 37(11): 855-861.
|
Abstract Thermal barrier coatings are widely used in the protection of engine turbine blade, in this paper, Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) nanomaterials for the applications of thermal barrier coatings were synthesized by hydrothermal method, the crystallographic structures, morphologies and related thermophysical properties of powders and their bulk materials were comparatively assessed via various techniques. The analysis results of XRD and Raman spectra indicate that La2(Zr0.7Ce0.3)2O7, Nd2(Zr0.7Ce0.3)2O7 and Sm2(Zr0.7Ce0.3)2O7 are pyrochlore structures, while Gd2(Zr0.7Ce0.3)2O7 belongs to fluorite type. The lattice parameters, average particle sizes and specific surface areas were also characterized. The volume shrinkage / relative density, the sintering-resistance properties of the four bulk materials were evaluated by SEM observation. Additionally, their thermophysical properties (such as the activation energy of crystal growth, thermal expansion coefficient, and thermal conductivity) were investigated in detail. As the ionic radii of Ln decreasing, the activation energy of crystal growth and thermal expansion coefficient of Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) increased, however the thermal conductivity is just the opposite.
|
Received: 23 February 2023
|
|
Fund: National Natural Science Foundation of China(12004050);Research Foundation of the Education Department of Liaoning Province(LJKMZ20221493);Research Foundation of the Education Department of Liaoning Province(JYTMS20231624) |
Corresponding Authors:
WANG Chunjie, Tel: (0416)3400145, E-mail: cjwang@foxmail.com
|
1 |
Sankar V, Ramkumar P, Sebastian D, et al. Optimized thermal barrier coating for gas turbine blades [J]. Mater. Today., 2019, 11: 912
|
2 |
Jonnoalagadda K P, Eriksson R, Li X H, et al. Thermal barrier coatings: life model development and validation [J]. Surf. Coating. Technol., 2019, 362: 293
doi: 10.1016/j.surfcoat.2019.01.117
|
3 |
Li R Y, Xie M, Zhang Y H, et al. Physical properties of Er2O3 doped Gd2(Zr0.8Ti0.2)2O7 ceramic materials [J]. Chin. J. Mater. Res., 2022, 36: 49
|
|
李瑞一, 谢 敏, 张永和 等. Er2O3掺杂Gd2(Zr0.8Ti0.2)2O7陶瓷的物理性能 [J]. 材料研究学报, 2022, 36: 49
doi: 10.11901/1005.3093.2021.230
|
4 |
Li Y, Chen X L, Sun C, et al. Preparation and performance of LnMgAl11O19(Ln=La, Nd) powders for thermal barrier coating [J]. Chin. J. Mater. Res., 2019, 33: 409
|
|
李 莹, 陈小龙, 孙 超 等. 热障涂层陶瓷层材料LnMgAl11O19 (Ln=La, Nd)粉体的性能 [J]. 材料研究学报, 2019, 33: 409
|
5 |
Wang Y, Shao B, Fu B, et al. Comparative researches on the thermophysical properties of nano-sized La2(Zr0.7Ce0.3)2O7 synthesized by different routes [J]. Nanomaterials., 2022, 12: 2487
doi: 10.3390/nano12142487
|
6 |
Xu Z, He L, Mu R, et al. Influence of the deposition energy on the composition and thermal cycling behavior of La2(Zr0.7Ce0.3)2O7 coatings [J]. J. Eur. Ceram. Soc., 2009, 29: 1771
doi: 10.1016/j.jeurceramsoc.2008.10.005
|
7 |
Zhang H, Li Z, Xu Q, et al. Preparation and thermophysical properties of Sm2(Zr0.7Ce0.3)2O7 ceramic [J]. Adv. Eng. Mater., 2008, 10: 139
doi: 10.1002/adem.v10:1/2
|
8 |
Wang C, Wang Y, Fan X. Preparation and thermophysical properties of La2(Zr0.7Ce0.3)2O7 ceramic via sol-gel process [J]. Surf. Coating. Technol., 2012, 212: 88
doi: 10.1016/j.surfcoat.2012.09.026
|
9 |
Wang C, Wang Y. Thermophysical properties of La2(Zr0.7Ce0.3)2O7 prepared by hydrothermal synthesis for nano-sized thermal barrier coatings [J]. Ceram. Int., 2015, 41: 4601
doi: 10.1016/j.ceramint.2014.12.003
|
10 |
Zhao F A, Xiao H Y, Bai X M, et al. Effects of doping Yb3+, La3+, Ti4+, Hf4+, Ce4+ cations on the mechanical properties, thermal conductivity, and electronic structures of Gd2Zr2O7 [J]. J. Alloy. Comp., 2019, 776: 306
doi: 10.1016/j.jallcom.2018.10.240
|
11 |
Duarte W, Vardelle M, Rossignol S, et al. Effect of the precursor nature and preparation mode on the coarsening of La2Zr2O7 compounds [J]. Ceram. Int., 2016, 42: 1197
doi: 10.1016/j.ceramint.2015.09.051
|
12 |
Zhang P, Navrotsky A, Guo B, et al. Energetics of cubic and monoclinic yttrium oxide polymorphs: phase transitions, surface enthalpies, and stability at the nanoscale [J]. J. Phys. Chem. C., 2008, 112: 932
doi: 10.1021/jp7102337
|
13 |
Kaliyaperumal C, Sankarakumar A, Palanisamy J, et al. Fluorite to pyrochlore phase transformation in nanocrystalline Nd2Zr2O7 [J]. Mater. Lett., 2018, 228: 493
doi: 10.1016/j.matlet.2018.06.087
|
14 |
Wang C, Wang Y, Cheng Y, et al. Effects of surfactants on the structure and crystal growth behavior of Sm2Zr2O7 nanocrystalline [J]. Powder Technol., 2012, 225: 130
doi: 10.1016/j.powtec.2012.03.050
|
15 |
Wang C, Wang Y, Cheng Y, et al. Preparation and thermophysical properties of nano-sized Ln2Zr2O7 (Ln=La, Nd, Sm, and Gd) ceramics with pyrochlore structure [J]. J. Mater. Sci., 2012, 47: 4392
doi: 10.1007/s10853-012-6293-6
|
16 |
Qu Z, Wan C, Pan W, et al. Thermal expansion and defect chemistry of MgO doped Sm2Zr2O7 [J]. Chem. Mater., 2007, 19: 4913
doi: 10.1021/cm071615z
|
17 |
Tong Y, Lu L, Yang X, et al. Characterization and their photocatalytic properties of Ln2Zr2O7 (Ln=La, Nd, Sm, Dy, Er) nanocrystals by stearic acid method [J]. Solid. State. Sci., 2008, 10: 1379
doi: 10.1016/j.solidstatesciences.2008.01.027
|
18 |
Kutty K V G, Rajagopalan S, Mathews C K, et al. Thermal expansion behavior of some rare earth oxide pyrochlores [J]. Mater. Res. Bull., 1994, 29: 759
doi: 10.1016/0025-5408(94)90201-1
|
19 |
Wang C, Wang Y, Zhang A, et al. The influence of ionic radii on the grain growth and sintering-resistance of Ln2Ce2O7 (Ln=La, Nd, Sm, Gd) [J]. J. Mater. Sci., 2013, 48: 8133
doi: 10.1007/s10853-013-7625-x
|
20 |
Li J G, Wang Y, Ikegami T, et al. Densification below 1000℃ and grain growth behaviors of yttria doped ceria ceramics [J]. Solid State Ionics., 2008, 179: 951
doi: 10.1016/j.ssi.2008.01.053
|
21 |
Mazaheri M, Simchi A, Dourandish M, et al. Master sintering curves of a nanoscale 3Y-TZP powder compacts [J]. Ceram. Int., 2009, 35: 547
doi: 10.1016/j.ceramint.2008.01.008
|
22 |
Wang C, Wang Y. A study of phase evolution and crystal growth for nano-sized monoclinic Y4Al2O9 as a novel thermal barrier coatings [J]. Ceram. Int., 2019, 45: 19679
doi: 10.1016/j.ceramint.2019.06.217
|
23 |
Zhang H, Xu Q, Wang F, et al. Preparation and thermophysical properties of (Sm0.5La0.5)2Zr2O7 and (Sm0.5La0.5)2(Zr0.8Ce0.2)2O7 ceramics for thermal barrier coatings [J]. J. Alloy. Comp., 2009, 475: 624
doi: 10.1016/j.jallcom.2008.07.068
|
24 |
Dean J. Lang's Handbook of Chemistry [M]. 13th Ed., New York: McGraw-Hill Book Co, 1985: 37
|
25 |
Wan C, Qu Z, Du A, et al. Influence of B site substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7 [J]. Acta Mater., 2009, 57: 4782
doi: 10.1016/j.actamat.2009.06.040
|
26 |
Mazaheri M, Simchi A, Dourandish M, et al. Master sintering curves of a nanoscale 3Y-TZP powder compacts [J]. Ceram Inter., 2009, 35: 547
doi: 10.1016/j.ceramint.2008.01.008
|
27 |
Wan C, Qu Z, Du A, et al. Influence of B site substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7 [J]. Acta Mater., 2009, 57: 4782
doi: 10.1016/j.actamat.2009.06.040
|
28 |
Wan C, Pan W, Xu Q, et al. Effect of point defects on the thermal transport properties of (La x Gd1- x )2Zr2O7: experiment and theoretical model [J]. Phys. Rev. B., 2006, 74: 144109-1
doi: 10.1103/PhysRevB.74.144109
|
29 |
Berman R, Sciama D W. Wilkinson D H,et al. Thermal Conduction in Solids [M]. Oxford: Clarendon Press, 1976: 66
|
30 |
Zhang H, Xu Q, Wang F, et al. Preparation and thermophysical properties of (Sm0.5La0.5)2Zr2O7 and (Sm0.5La0.5)2(Zr0.8Ce0.2)2O7 ceramics for thermal barrier coatings [J]. J. Alloy. Comp., 2009, 475: 624
doi: 10.1016/j.jallcom.2008.07.068
|
31 |
Zhou H, Yi D, Yu Z, et al. Preparation and thermophysical properties of CeO2 doped La2Zr2O7 ceramic for thermal barrier coatings [J]. J. Alloy. Compd., 2007, 438: 217
doi: 10.1016/j.jallcom.2006.08.005
|
32 |
Wang C, Hu Z Q, Wu S J, et al. Preparation and properties of La2O3 doped BST/Mg2TiO4 microwave composite ceramics [J]. Chin. J. Mater. Res., 2011, 25: 109
|
|
王 成, 胡作启, 伍双杰 等. La2O3掺杂BST/Mg2TiO4微波复核陶瓷的制备和性能 [J]. 材料研究学报, 2011, 25: 109
|
33 |
Guan Z D, Zhang Z T, Jiao J S. Physical Properties of Inorganic Materials [M]. Beijing: Tsinghua Univiersity Press, 1992: 144
|
|
关振铎, 张中太, 焦金生. 无机材料物理性能 [M]. 北京: 清华大学出版社, 1992: 144
|
34 |
Cahill D G, Watson S K, Pohl R O, et al. Lower limit to the thermal conductivity of disordered crystals [J]. Phys. Rev. B., 1992, 46: 6131-1
pmid: 10002297
|
35 |
Clarke D R. Materials selection guidelines for low thermal conductivity thermal barrier coatings [J]. Surf. Coating. Technol., 2003, 163: 67
|
36 |
Schelling P K, Phillpot S R, Grimes R W, et al. Optimum pyrochlore compositions for low thermal conductivity by simulation [J]. Philos. Mag. Lett., 2004, 84: 127
doi: 10.1080/09500830310001646699
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|