Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (11): 862-870    DOI: 10.11901/1005.3093.2023.088
ARTICLES Current Issue | Archive | Adv Search |
Arc Motion Behavior and Ablation Characteristics of Coarse-grained/Fine-grained CuCr50 Contact Materials
LIU Biao1, WANG Jun1, YUAN Zhao2,3(), WANG Zhe1, CHANG Yanli1, LI Qingshan1
1.School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
2.State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3.Key Laboratory of Pulsed Power Technology, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430074, China
Cite this article: 

LIU Biao, WANG Jun, YUAN Zhao, WANG Zhe, CHANG Yanli, LI Qingshan. Arc Motion Behavior and Ablation Characteristics of Coarse-grained/Fine-grained CuCr50 Contact Materials. Chinese Journal of Materials Research, 2023, 37(11): 862-870.

Download:  HTML  PDF(17170KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The coarse-grained and fine-grained CuCr50 electrical contact materials were prepared by combining high-energy ball milling and spark plasma sintering (SPS) technology, and their composition, density, microhardness and conductivity, the distribution of cathode spots on the surface of the contact during discharge, the speed of movement and the morphology of contact surface erosion were characterized, and the arc erosion characteristics of coarse-grained and fine-grained CuCr materials were studied. The results show that the hardness of fine-grained CuCr50 contacts (160.29HV) is higher than that of coarse-grained CuCr50 contacts (104.15HV), and the movement speed of cathode spots of fine-grained contacts is 16.9 m/s under 50 Hz power frequency conditions, which is 4.9% lower than that of coarse-grained contacts of 17.78 m/s. This suggests that the cathode spot on the surface of the coarse-grained contact moves slightly faster to the edge of the contact than the fine-grained contact. Compared with coarse-grained contacts, the cathode spots produced on the surface of the fine-grained contacts during arc burning are small in size, large in number, low in brightness and more uniform. Under the same current amplitude, the arc voltage drop of fine-grained CuCr contacts is lower than that of coarse-grained contacts. After arc ablation, the overall morphology of the fine-grained CuCr contact is flat, and there is no obvious large ablation pit and droplet splash. The comprehensive results show that the refinement of the second phase Cr phase can significantly improve the overall electrical contact performance of CuCr50 contacts, and the arc ablation resistance of fine-grained CuCr50 contacts is higher than that of coarse-grained contacts.

Key words:  metallic materials      CuCr      arc erosion      SPS      cathode spots     
Received:  16 January 2023     
ZTFLH:  TG144  
Fund: National Natural Science Foundation of China(52177143);Natural Science Foundation of Shaanxi Province(2020JQ-829);Natural Science Foundation of Shaanxi Province(2023-YBGY-171);Department of Education of Shaanxi Provincial Government(21JK0644);Shaanxi Provincial Department of Human Resources and Social Security, 2019 Overseas Scholars' Scientific and Technological Activities Selected as Funding Projects(No.16)
Corresponding Authors:  YUAN Zhao, Tel: 13349921685, E-mail: yuanzhao8507@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.088     OR     https://www.cjmr.org/EN/Y2023/V37/I11/862

Fig.1  Sample diagram of coarse-grained/fine-grained CuCr50 contact material (a) schematic diagram of graphite abrasive, (b) contact drawing, (c) contact after sintering, (d) contact after wire cutting, (e) cup contact
Fig.2  XRD spectrum of coarse-grained/fine-grained CuCr50 contact materials
Fig.3  SEM images of coarse-grained/fine-grained CuCr50 contact material (a) coarse-grained CuCr50, (b) fine-grained CuCr50
Physical propertiesCoarse-grained CuCr50Fine-grained CuCr50
Electrical conductivity/ MS·m-122.320.9
Hardness (HV)104.15160.29
Density / g·cm-37.937.90
Theoretical density / g·cm-37.987.98
Density percentage / %99.499.0
Table 1  Physical properties of coarse-grained/fine-grained CuCr50 contact materials
Fig.4  Distribution of the initial diffusion process of coarse-grained CuCr50 contact cathode spots (a) 2 kA, (b) 5 kA, (c) 8 kA, (d) 15 kA
Fig.5  Distribution of fine-grained CuCr50 contact cathode spot initiation diffusion process (a) 3 kA, (b) 6 kA, (c) 9 kA, (d) 15 kA
Contact typeCurrent / kATime1 / msDiffusion speed / m·s-1Time2 / ms
Coarse-grained CuCr50216.263.22
59.202.53
812.631.92
1517.781.47
Fine-grained CuCr50317.232.91
68.832.55
910.172.01
1516.901.55
Table 2  Coarse-grained/fine-grained CuCr50 contacts 1ms before arcing, cathode spot movement speed and moving to contact edge time
Fig.6  Voltage diagram of coarse-grained/fine-grained CuCr50 contact arc
Fig.7  SEM images of coarse-grained/fine-grained CuCr50 contact arc ablation (a, c, e) coarse-grained;(b, d, f) fine-grained
Fig.8  Distribution of cathode spots at 50Hz fine-grained CuCr50 contacts at 5.0 ms peak hour (a) 3 kA, (b) 4 kA, (c) 5 kA, (d) 6 kA, (e) 7 kA, (f) 8 kA, (g) 9 kA, (h) 10 kA, (i) 11 kA, (j) 12 kA, (k) 13 kA, (l) 14 kA, (m) 15 kA
1 Li H Y, Wang X H, Guo X H, et al. Material transfer behavior of AgTiB2 and AgSnO2 electrical contact materials under different currents [J]. Mater. Des., 2017, 114: 139
doi: 10.1016/j.matdes.2016.10.056
2 Ma M J, Qu Y H, Wang Z, et al. Dynamics evolution and mechanical properties of the erosion process of Ag-CuO contact materials [J]. Acta Metall. Sin., 2022, 58(10): 1305
doi: 10.11900/0412.1961.2021.00498
马敏静, 屈银虎, 王 哲 等. Ag-CuO 触点材料侵蚀过程的演化动力学及力学性能 [J]. 金属学报, 2022, 58(10): 1305
doi: 10.11900/0412.1961.2021.00498
3 Zhang X, Ren W, Zheng Z, et al. Effect of electrical load on contact welding failure of silver tin oxide material used in DC electromechanical relays [J]. IEEE Access, 2019, 7: 133079
doi: 10.1109/ACCESS.2019.2940966
4 Hotta K, Inaguchi T. Contact welding mechanism with bounce arc on Ag and Cu contacts in low-voltage switches [J]. IEEE Trans. Compon. Packag. Manufact. Technol., 2017, 7(3): 363
5 Ma M J, Wang Z, Yuan Z, et al. Revealing the crucial role of skeleton restructuring on erosion dispersion of Ag-CuO contact materials [J]. Appl. Surf. Sci., 2023, 611: 155676
doi: 10.1016/j.apsusc.2022.155676
6 Guan W M, Yuan J, Lv H, et al. Homogeneous arc ablation behaviors of CuCr cathodes improved by chromic oxide [J]. J. Mater. Sci. Technol., 2021, 81: 1
doi: 10.1016/j.jmst.2020.10.083
7 Wang L J, Zhang X, Wang Y, et al. Simulation of cathode spot crater formation and development on CuCr alloy in vacuum arc [J]. Phys. Plasmas, 2018, 25(4): 043511
8 Inada Y, Kikuchi R, Nagai H, et al. Influence of CuCr electrode composition on 2D electron and metal vapor density distribution over vacuum arc [J]. J. Phys. D Appl. Phys., 2020, 53(30): 305201
doi: 10.1088/1361-6463/ab83bd
9 Slade P. Contact materials for vacuum interrupters [J]. IEEE Trans. Parts Hybrids Packag., 1974, 10(1): 43
10 Slade P G. Advances in material development for high power, vacuum interrupter contacts [J]. IEEE Trans. Comp. Packag. Manufact. Technol., 1994, 17A(1) : 96
doi: 10.1109/JPROC.2007.913999
11 Zou J T, Song D Z, Shi H, et al. Effects of grading tungsten powders on properties of CuW alloy [J]. Mater. Res. Express, 2020, 7(2): 026528
12 Zhao Q, Lei Q, Gan X P, et al. Effects of the partially-unzipped carbon nanotubes on the microstructure and properties of CuCr matrix composites [J]. Diam. Relat. Mater., 2020, 109: 108035
doi: 10.1016/j.diamond.2020.108035
13 Lin R J, Wang L J, Ma J W, et al. Experiment investigation on vacuum arc of AMF contacts under different materials [J]. AIP Adv., 2018, 8(9): 095110
14 Wang Y P, Zhang L N, Yang Z M, et al. Research progress of fine-grained-ultrafine-grained CuCr contact materials [J]. High Voltage Apparat., 1997, 33(2): 34
王亚平, 张丽娜, 杨志懋 等. 细晶-超细晶CuCr触头材料的研究进展 [J]. 高压电器, 1997, 33(2): 34
15 Wang Y P, Zhao F, Ding B Y, et al. Preparation and properties of CuCr contact materials with nanometer grains [J]. Ordn. Mater. Sci. Eng., 1998, 21(3): 9
王亚平, 赵 峰, 丁秉钧 等. 纳米晶CuCr触头材料的制备及性能 [J]. 兵器材料科学与工程, 1998, 21(3): 9
16 Wang Y P, Ding B Y, Zhou J E. Effect of alloying elements on vacuum withstand voltage strength of CuCr contact material at different temperatures [J]. High Voltage Apparat., 1998, 34(3): 13
王亚平, 丁秉钧, 周敬恩. 合金元素对CuCr触头材料不同温度下真空耐电压强度的影响 [J]. 高压电器, 1998, 34(3): 13
17 Xiu S X, Zou J Y, He J J. Effect of micro-features on macro-properties of CuCr contact material [J]. High Voltage Apparat., 2000, 36(3): 40
修士新, 邹积岩, 何俊佳. CuCr触头材料微观特性对其宏观性能的影响 [J]. 高压电器, 2000, 36(3): 40
18 Xiu S X, Wang J M. Effect of Cr content in CuCr contact material on its properties [J]. Vacuum Electron., 1998, (1): 24
修士新, 王季梅. Cr含量对CuCr触头材料性能的影响 [J]. 真空电子技术, 1998, (1): 24
19 Zhao L J, Li Z B, Wang K, et al. Arc erosion characteristics of nanocrystalline CuCr50 contact material [J]. High Voltage Apparat., 2012, 48(5): 15
赵来军, 李震彪, 王 珂 等. 纳米CuCr50触头材料电弧侵蚀特性 [J]. 高压电器, 2012, 48(5): 15
20 Wang Y P, Cui J G, Yang Z M, et al. The investigation of the micro grain CuCr alloys and its electrical breakdown properties [J]. J. Xi'an Jiaotong Univ., 1997, 31(3): 76
王亚平, 崔建国, 杨志懋 等. 微晶CuCr材料的制备及电击穿性能的研究 [J]. 西安交通大学学报, 1997, 31(3): 76
21 Zhang L N, Wang Y P, Yang Z M, et al. The influence of CuCr contact materials on dielectric strength between small interpole at high temperature [J]. Trans. China Electrotechn. Soc., 1998, 13(3): 36
张丽娜, 王亚平, 杨志懋 等. 高温下CuCr触头材料对真空小间隙击穿强度的影响 [J]. 电工技术学报, 1998, 13(3): 36
22 Lin R J, Wang L J, Shi W X, et al. Experimental investigation on triggered vacuum arc and erosion behavior under different contact materials [J]. IEEE Trans. Plasma Sci., 2018, 46(8): 3047
doi: 10.1109/TPS.2018.2854715
23 Pang X H, Yang J F, Jing H, et al. Investigation of unstable motion characteristics of vacuum arc cathode spots between transverse magnetic field contacts [J]. Contribut. Plasma Phys., 2020, 60(1): e201900086
24 Jing H, Yang J F, Pang X H, et al. Simulation of vacuum arc cathode spot movement between transverse magnetic field contacts [J]. AIP Adv., 2021, 11(1): 015324
25 Feng Y, Bu T, Wang H L, et al. Influence of nanocrystallization of CuCr25 on spot diffusion of cathode by vacuum Arc [J]. Rare Met. Mater. Eng., 2007, 36(5): 929
冯 宇, 卜 涛, 王红理 等. CuCr25纳米晶化对真空电弧阴极斑点扩散的影响 [J]. 稀有金属材料与工程, 2007, 36(5): 929
26 Manière C, Pavia A, Durand L, et al. Pulse analysis and electric contact measurements in spark plasma sintering [J]. Electr. Power Syst. Res., 2015, 127: 307
doi: 10.1016/j.epsr.2015.06.009
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!